
R E C O L A
REcursive Computation of One-Loop Amplitudes ✩

Version 1.1

Stefano Actisa, Ansgar Dennerb, Lars Hoferc, Jean-Nicolas Langb,
Andreas Scharfb, Sandro Ucciratid

aLilienstrasse 7, 5200 Brugg AG, Switzerland
bUniversität Würzburg, Institut für Theoretische Physik und Astrophysik,

D-97074 Würzburg, Germany
cDepartment de F́ısica Quàntica i Astrof́ısica (FQA),

Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB),
Mart́ı Franquès 1, E-08028 Barcelona, Spain

dUniversità di Torino e INFN, 10125 Torino, Italy

Abstract

We present the Fortran95 program Recola for the perturbative compu-
tation of next-to-leading-order transition amplitudes in the Standard Model
of particle physics. The code provides numerical results in the ’t Hooft–
Feynman gauge. It uses the complex-mass scheme and allows for a consistent
isolation of resonant contributions. Dimensional regularization is employed
for ultraviolet and infrared singularities, with the alternative possibility of
treating collinear and soft singularities in mass regularization. Recola sup-
ports various renormalization schemes for the electromagnetic and a dynam-
ical Nf-flavour scheme for the strong coupling constant. The calculation of
next-to-leading-order squared amplitudes, summed over spin and colour, is
supported as well as the computation of colour- and spin-correlated leading-
order squared amplitudes needed in the dipole subtraction formalism.

Keywords: NLO computations; one-loop amplitudes; higher orders

✩The program is available from http://recola.hepforge.org.
Email addresses: stefano.actis@gmail.com (Stefano Actis),

ansgar.denner@physik.uni-wuerzburg.de (Ansgar Denner), hofer@ecm.ub.edu
(Lars Hofer), jlang@physik.uni-wuerzburg.de (Jean-Nicolas Lang),
ascharf@physik.uni-wuerzburg.de (Andreas Scharf), uccirati@to.infn.it
(Sandro Uccirati)

Preprint submitted to Computer Physics Communications December 22, 2016

http://recola.hepforge.org/

PROGRAM SUMMARY
Manuscript Title: Recola: REcursive Computation of One-Loop Amplitudes
Authors: Stefano Actis, Ansgar Denner, Lars Hofer, Jean-Nicolas Lang, Andreas
Scharf, Sandro Uccirati
Program Title: Recola
Journal Reference:
Catalogue identifier:
Licensing provisions: GNU GPL version 3
Programming language: Fortran95
Computer: any with a Fortran95 compiler
Operating system: Linux, Mac OS X
RAM: Depends on the nature of the problem, typically 1GB for a 2 → 4 process.
Number of processors used: one
Supplementary material: none
Keywords: NLO computations, radiative corrections, one-loop amplitudes; higher
orders
Classification:
4.4 Feynman diagrams, 11.1 General, High Energy Physics and Computing
External routines/libraries: Collier library
Subprograms used: none
Nature of problem:
Evaluation of general tree-level and one-loop scattering amplitudes occurring in
the calculation of observables in relativistic quantum field theories
Solution method:
Tree-level and one-loop amplitudes are numerically calculated using a recursive al-
gorithm. For one-loop amplitudes numerical results for tensor integrals are needed
as input. These are provided by the Collier library. In addition, contributions
of counterterms and rational terms are determined via dedicated Feynman rules.
Restrictions:
The code has been used for processes with up to 7 external particles at one-loop
level and up to 9 external particles at tree level. For large multiplicities available
internal storage may cause limitations.
Additional comments: none
Running time: Depends on the nature of the problem, typically 100ms for a 2 → 4
process.

2

1. Introduction

The experimental studies at present and future high-energy colliders are
focused on the precise determination of the free parameters of the Standard
Model (SM) and on the search for new physics. The interpretation of the
data often relies on accurate theoretical predictions based on perturbation
theory, requiring detailed calculations beyond the leading-order (LO) approx-
imation. In the past years, many groups have concentrated their efforts on
next-to-leading-order (NLO) calculations (see e.g. Refs. [1–5]), and alterna-
tive strategies to the traditional Feynman-diagrammatic approach have been
developed, which helped to automatize and speed up the calculation of NLO
amplitudes. One class of methods makes use of generalized unitarity rela-
tions or of amplitude reduction at the integrand level in order to directly
express one-loop amplitudes in terms of scalar integrals [6–13]. Other meth-
ods instead rely on higher-rank tensor integrals, either via an improved dia-
grammatic approach [14] or employing one-loop recursion relations [15, 16].
Finally, yet another strategy consists in performing a simultaneous numerical
integration over the phase space and the loop momentum of NLO amplitudes
[17–19].

The traditional as well as the new techniques for the calculation of one-
loop amplitudes have been implemented in many one-loop amplitude gen-
erators such as FeynArts/FormCalc [20–22], Blackhat [23], Helac-
1loop [13], NGluon [24], NJet [25], Madloop [26], GoSam [27], and
OpenLoops [14] . In this article we present the Fortran95 libraryRecola
for the generation of tree-level and one-loop amplitudes in the SM. While
almost all of the above-listed programs were developed with a focus on
QCD corrections1, Recola has been designed from the beginning with the
main objective of facilitating an automated calculation of electroweak (EW)
corrections. Recently, EW corrections have been included also in Open-
Loops [28, 29], MadGraph5 aMC@NLO [30, 31], and GoSam [32].
Recola further differs from other public codes in the implemented method
as it makes consequent use of a recursive construction of one-loop off-shell
currents following the technique described in Ref. [16]. It has successfully
applied for the calculation of EW corrections to the processes pp → 2ℓ+≤2j

1FeynArts/FormCalc allows to perform calculations in more general scenarios in
and beyond the SM, though with less emphasis on high multiplicities and CPU perfor-
mance.

3

[33], pp → νµµ
+ν̄ee

−, µ+µ−e+e−, µ+µ−µ+µ− [34–36], pp → e+νeµ
−ν̄µbb [37],

and pp → µ+νµe
+νejj [38], and for the calculation of QCD corrections to the

process pp → WWbb̄H [39].
For the reduction of the amplitudes and the evaluation of the one-loop

integrals, a task that demands high standards with respect to numerical
stability and CPU performance, amplitude generators are either equipped
with own internal implementations, or they rely on external libraries. These
include libraries for amplitude reduction at the integrand level such as Cut-
Tools [40], Samurai [41], and Ninja [42], libraries for tensor-integral re-
duction like FF [43], LoopTools [44], PJFry [45], Golem95C [46], Col-
lier [47, 48], and Package-X [49], as well as packages for the evaluation of
scalar integrals like QCDLoop [50] and OneLOop [51],

In the case of Recola, the public Fortran95 library Collier is used
which achieves a fast and stable calculation of tensor integrals via the strate-
gies developed in Refs. [52–54].

The available one-loop generators do not only differ in the class of com-
putations they can perform, but also in the level of automation and in the
cost of performance (speed and memory). The latter is an essential aspect
because typical Monte-Carlo simulations require a huge number of evalua-
tions of the matrix element for each partonic process in order to obtain a
sufficient statistical accuracy. To this end, in the development of Recola
a big effort has been invested in the optimization of the performance in or-
der to permit the fast “on-the-fly” generation and evaluation of NLO matrix
elements. This strategy is complementary to the one used by other groups,
as for example the Blackhat collaboration, who have developed a flexible
storage format of pre-calculated matrix elements for partonic events in large
Root N -tuple files [55], which are then read by the Monte Carlo generator.

This article is organized as follows: In Section 2 we describe the basic
features of Recola; Section 3 gives the user the necessary information on
how to download and install the Recola library. Section 4 explains the
usage of Recola and gives a detailed description of its input parameters and
of all subroutines that can be called by the user, and Section 5 contains the
conclusions. Finally, in Appendix A we provide the explicit representations
for spinors and polarization vectors used in Recola, and in Appendix B we
list the processes that have been checked against other programs.

4

2. Basic features of Recola

Recola is a Fortran95 code for the computation of tree-level and
one-loop scattering amplitudes in the SM, based on recursion relations [16].

The algorithm to compute the tree-level amplitude A0 is inspired by the
Dyson–Schwinger equations [56–58]. The recursion relations for the one-loop
amplitudes are more involved and rely on the decomposition of the one-loop
amplitudeA1 in terms of tensor integrals (TIs) T

µ1···µrt

(t) and tensor coefficients

(TCs) c
(t)
µ1···µrt

:

A1 =
∑

t

c(t)µ1···µrt
T

µ1···µrt

(t) +ACT . (1)

Here, ACT is the contribution from the counterterms. In order to regularize
ultraviolet (UV) singularities the TIs are treated in dimensional regulariza-
tion by introducing the variable space-time dimension D = 4 − 2ǫ together
with the mass scale µ:

T
µ1···µrt

(t) =
(2πµ)4−D

iπ2

∫

dDq
qµ1 · · · qµrt

D
(t)
0 · · ·D(t)

kt

. (2)

Here, kt is the number of propagators in the loop, rt the rank of T(t) and

D
(t)
i = (q + p

(t)
i)2 − (m

(t)
i)2, i = 0, . . . , kt, p

(t)
0 = 0, (3)

where p
(t)
i is the momentum flowing in the ith propagator. UV singularities of

the TIs manifest themselves as poles in ǫ, and they are cancelled by analogous
singularities present in the counterterm amplitude ACT, which can be built
from tree-level topologies involving counterterm vertices [59].

Based on an idea by van Hameren [15], a recursive procedure to compute
the TCs numerically has been developed [16] and implemented in Recola.
In this framework the indices µ1, . . . , µrt are taken strictly 4-dimensional
(with values 0, 1, 2, 3), and the (D − 4)-dimensional part of the contraction
between the TCs and TIs in A1 is taken into account in the form of an
additional rational part AR2 (of type R2 [60]):

A1 = AD4 +AR2 +ACT , AD4 =
∑

t

c
(t)
µ̂1···µ̂rt

T
µ̂1···µ̂rt

(t) . (4)

The hat on the indices µ1, . . . , µrt indicates that they run over the 4 dimen-

sions µ̂i = 0, 1, 2, 3. The tensor integrals T
µ̂1···µ̂rt

(t) are computed in Recola

5

by means of an interface with the Collier library [47]. The contribution
AR2 is determined evaluating tree-level-like topologies with special Feynman
rules [60–63] similar to those for the counterterms.

2.1. Collinear and soft singularities

Collinear singularities originating from light fermions can be treated in
Recola either in dimensional or in mass regularization. For each fermion an
individual choice can be made: If a fermion is defined as massless, collinear
divergences stemming from this fermion are regularized dimensionally. If on
the other hand it has been assigned a (regulator) mass, its collinear singu-
larities are regularized by the corresponding mass parameter.

Soft singularities are either regularized dimensionally or by assigning a
mass regulator λ to photons and gluons. The second case is allowed in
Recola only if collinear singularities are treated in mass regularization for
all fermions.

2.2. Dimensional regularization

If dimensional regularization is used for collinear or soft singularities,
poles in ǫ of infrared (IR) origin are generated in A1 together with a de-
pendence on the scale µ. In order to distinguish this ǫ and µ dependence
of IR origin from the one of UV origin, Recola introduces the separate
parameters µUV, ǫUV and µIR, ǫIR in all TIs and counterterms, together with

∆UV =
(4π)ǫUV Γ(1 + ǫUV)

ǫUV

,

∆IR =
(4π)ǫIR Γ(1 + ǫIR)

ǫIR
, ∆IR2 =

(4π)ǫIR Γ(1 + ǫIR)

ǫ2IR
. (5)

Following the conventions of Collier [47, 48] and Ref. [54], the parameters
∆UV, ∆IR and ∆IR2 that contain the poles in ǫ absorb a normalization factor
of the form 1 +O(ǫ). In terms of these parameters, the one-loop amplitude
takes the general form

A1 = ∆UV AUV

1 +∆IR2 AIR2

1 +∆IR AIR

1 (µIR) +Afin
1 (µUV, µIR). (6)

The term AUV
1 vanishes after renormalization. The a priori unphysical scale

µUV should either cancel between the TIs and the counterterms, or it should
receive a physical interpretation as for example when it is identified with the
renormalization scale Q in the MS scheme for the strong coupling constant gs.

6

In Recola, however, the MS renormalization scale Q is kept independent
from µUV. In this way, also MS-renormalized amplitudes are independent of
µUV but depend on Q instead.

The counterterm δZgs, relating the bare and the renormalized strong
coupling constants g0s and gs according to g0s = gs (1 + δZgs) is defined as

δZgs = − αs(Q
2)

4π

[

(

11

2
− Nf

3

)(

∆UV + ln
µ2

UV

Q2

)

−1

3

∑

F

(

∆UV + ln
µ2

UV

|mF |2
)

]

,

(7)
where Nf is the number of active (light) flavours and F runs over the inactive
(heavy) flavours. According to Eq. (7), the contribution from active flavours
is renormalized within the MS scheme, while the one from inactive flavours
is subtracted at zero momentum transfer. The classification into active and
inactive flavours defines the flavour scheme. In Recola the user can choose
between:

• The variable-flavour scheme: All quark flavours lighter than Q are
considered as active, the remaining ones are treated as inactive.

• The Nf-flavour scheme: The Nf lightest quarks are considered active,
the remaining ones are treated as inactive. In this case, Nf cannot be
chosen lower than the number of massless quarks.

After renormalization, the one-loop amplitude becomes

A1 = ∆IR2 AIR2

1 +∆IR AIR

1 (µIR) +Afin
1 (Q, µIR). (8)

Recola performs a numerical computation of the complete amplitude A1,
with the values for ∆IR, ∆IR2, µIR and Q supplied by the user. The con-
tribution Afin

1 can be obtained by setting ∆IR = ∆IR2 = 0 (default). Since
the computation of A1 involves objects depending on ∆UV and µUV at in-
termediate steps, numerical values for these variables must be given as well.
The independence of A1 on ∆UV and µUV can be verified numerically by
varying these parameters. Recola provides default values for all the above-
mentioned parameters that can be changed by the user.

2.3. The strong coupling constant αs

The renormalized strong coupling constant αs depends on the renormal-
ization scale Q. It is appropriate to choose a value for Q of the order of the

7

energy scale characteristic for the process in question and to take as coupling
constant the corresponding value for αs(Q

2).
Often, in the computation of physical processes the scale Q is defined

from the momenta of the external particles and is thus assigned a different
value for each phase-space point. The possibility to use such a dynamical
scale Q is supported by Recola, and the respective values for the running
αs(Q

2) can either be supplied by the user or computed by Recola. In the
latter case, the value for αs(Q

2) at the scale Q is determined from its value
αs(Q

2
0) at the initialization scale Q0, by means of the following one- and

two-loop formulas in the Nf-flavour scheme [64]:

1-loop running: a =
a0

1 + a0 β0 L
, (9)

2-loop running: a = a0

[

1 + a0 β0 L+ a0 b1 ln

(

1 +
a0 β0 L

1 + a0 b1

)]−1

. (10)

Here, we have introduced

a =
αs(Q

2)

4π
, a0 =

αs(Q
2
0)

4π
, L = ln

Q2

Q2
0

, (11)

b1 =
β1

β0
, β0 = 11− 2

3
Nf , β1 = 102− 38

3
Nf . (12)

2.4. Electroweak renormalization

Due to the presence of massive and unstable gauge bosons in the EW
sector of the SM, complex masses have to be introduced without spoiling
gauge invariance. This is achieved in Recola by using the complex-mass
scheme of Refs. [52, 53, 65]. The user can, however, also choose to proceed in
the on-shell scheme, where only the real part of the self-energies is taken for
the computation of the counterterms and the imaginary part of the masses
is kept only in the denominator of propagators.

For the renormalization of the EW coupling constant α, the user can
choose between three different schemes:

• GF scheme:
In this scheme the renormalized electromagnetic coupling α is derived
from the Fermi constant GF, measured in muon decay, and the masses
of the W and Z bosons via the tree-level relation:

α =

√
2GF

π
Re(M2

W)

(

1− Re(M2
W)

Re(M2
Z)

)

. (13)

8

• α(0) scheme:
In this scheme α is fixed from the value measured in Thomson scattering
at p2 = 0.

• α(MZ) scheme:
In this scheme α is renormalized at the Z pole, thus implicitly taking
into account its running from p2 = 0 to p2 = M2

Z.

2.5. Amplitude structure

In general, the amplitude of a process depends on helicities and colours
of external particles. For a process with l external legs we introduce the
notation

A → Aa1···al[h1, . . . , hl]. (14)

The variable hn (n = 1, . . . , l) defines the helicity of the nth external particle
and can take the values + or − for fermions and massless vector bosons,
and the values +, − or 0 for massive vector bosons (see Section 2.9 for the
conventions used in Recola). For scalar particles it necessarily assumes the
value 0. The variable an (n = 1, . . . , l) defines the colour of the nth external
particle and can take the values 1, 2, 3 for quarks and anti-quarks, and the
values 1, . . . , 8 for gluons, while it is absent for colourless particles.

According to the SU(3) decomposition 3 ⊗ 3̄ = 8 ⊕ 1, the colour-octet
representation of the gluon can be related to the product of the fundamental
and anti-fundamental representation of quarks and anti-quarks. The colour
content of the amplitude can thus alternatively be expressed in the so-called
colour-flow representation, where the colour of the gluons is represented by
means of a pair of indices taking the values 1, 2, 3 (see Refs. [16, 66, 67] for
details). Following this approach we write the amplitude as

A → Ai1···il
j1···jl[h1, . . . , hl]. (15)

The colour index in (n = 1, . . . , l) is absent for colourless particles, incoming
quarks and outgoing anti-quarks, while it takes the values 1, 2, 3 for gluons,
incoming anti-quarks and outgoing quarks. Similarly, the anti-colour index
jn (n = 1, . . . , l) is absent for colourless particles, incoming anti-quarks and
outgoing quarks, while it takes the values 1, 2, 3 for gluons, incoming quarks
and outgoing anti-quarks. The unphysical colour-singlet component, implic-
itly contained in the decomposition of the 3⊗ 3̄ representation of the gluons,

9

is eliminated by requiring

∑

im,jm

δimjm Ai1···im...il
j1···jm...jl

= 0, (16)

if particle m is a gluon. The two parametrizations (colour-octet vs. colour-
flow representation of the gluon) are related through

Ai1···il
j1···jl[h1, . . . , hl] =

∑

a1,...,al

(∆a1)
i1
j1

· · · (∆al)
il
jl
Aa1···al[h1, . . . , hl], (17)

Aa1···al[h1, . . . , hl] =
∑

i1,...,il
j1,...,jl

(∆a1)
j1

i1
· · · (∆al)

jl
il
Ai1···il

j1···jl[h1, . . . , hl], (18)

where the sums run over the colour indices present in Aa1···al and Ai1···il
j1···jl,

respectively. The matrices (∆a)
i
j are given by

(∆a)
i
j =

δia for incoming anti-quarks and
outgoing quarks (j is absent)

δa j for incoming quarks and
outgoing anti-quarks (i is absent)

1√
2
(λa)

i
j for gluons

, (19)

where λa (a = 1, . . . , 8) are the usual Gell-Mann matrices.2 Note that, while
Recola exclusively works in the colour-flow formalism, we give all formulae
in both representations to allow for an easy translation from one to the other.

In the colour-flow representation the colour part of the Feynman rules
contains products of Kronecker δs, and the colour structure of the amplitude
can be obtained as a linear combination of all possible structures built from
products of Kronecker δs carrying the colour indices of the external particles:

Ai1···il
j1···jl[h1, . . . , hl] =

∑

P

δi1j
P (1)

δi2j
P (2)

· · · δilj
P (l)

A
P (1)P (2)...P (l)

[h1, . . . , hl]. (20)

Here, the sum runs over all possible permutations P of the labels of ex-
ternal gluons, incoming quarks, and outgoing anti-quarks. The amplitudes

2In our convention, the λa are normalized according to Tr(λaλb) = 2 δab.

10

A
P (1)P (2)...P (l)

[h1, . . . , hl] are called structure-dressed amplitudes. For example
in the process u ū → Z g g, this decomposition is given by

Ai2i4i5
j1j4j5

= δi2j1 δ
i4
j4
δi5j5 A145 + δi2j1 δ

i4
j5
δi5j4 A154 + δi2j4 δ

i4
j1
δi5j5 A415

+ δi2j4 δ
i4
j5
δi5j1 A451 + δi2j5 δ

i4
j1
δi5j4 A514 + δi2j5 δ

i4
j4
δi5j1 A541, (21)

where j1 denotes the colour index of the incoming quark, i2 the one of the
incoming anti-quark, and i4, j4 and i5, j5 the ones of the outgoing gluons.
In order to render the notation more compact, we introduce the following
l-dimensional vectors:

• ~h with components h1, . . . , hl,

• ~c with components c1, . . . , cl, where cn = P (n) if δinjP (n)
is present in the

colour structure (i.e. if particle n is a gluon, an incoming anti-quark or
an outgoing quark) and cn = 0 otherwise (i.e. if particle n is a colourless
particle, an incoming quark or an outgoing anti-quark).

We then rewrite the structure-dressed amplitudes in the compact form

A(~c,~h) = A
P (1)P (2)...P (l)

[h1, . . . , hl]. (22)

Recola computes the Born contribution A(~c,~h)
0 and the one-loop contribu-

tion A(~c,~h)
1 to the structure-dressed amplitudes A(~c,~h) for all values the vectors

~c and ~h can take according to the external particles of the process.

2.6. Squared amplitudes

Recola also computes the squared amplitude, summed over helicities
and colours of the outgoing particles and averaged over helicities and colours
of the incoming ones (the average is indicated by a “bar”):

A2 =
∑

a1,...,al

∑

h1,...,hl

∣

∣

∣
Aa1···al [h1, . . . , hl]

∣

∣

∣

2

=
∑

i1,...,il
j1,...,jl

∑

h1,...,hl

∣

∣

∣
Ai1···il

j1···jl[h1, . . . , hl]
∣

∣

∣

2

.

(23)
An order-by-order expansion of the previous formula defines the Born and

one-loop contribution to the squared amplitude. Omitting for compactness
the colour and helicity indices, we have

A2 =
∑

∣

∣A0+A1+ . . .
∣

∣

2
=

∑

{

|A0|2+2Re (A1A∗
0)+ |A1|2+ . . .

}

. (24)

11

At the Born level Recola computes the squared amplitude
(

A2
)

0
, given by

(

A2
)

0
=

∑

|A0|2, (25)

at the one-loop level it computes the one-loop contribution
(

A2
)

1
to the

squared amplitude. If the Born amplitude A0 does not vanish,
(

A2
)

1
is

calculated as
(

A2
)

1
=

∑

2Re (A1A∗
0). (26)

For processes with a vanishing Born amplitude A0 (but non-vanishing A1),
Recola computes the first non-vanishing contribution to the squared am-
plitude, which in this case amounts to

(

A2
)

1
=

∑

|A1|2. (27)

2.7. Colour- and spin-correlated squared amplitudes

In order to compute the subtraction terms in the Catani–Seymour dipole
formalism [68, 69], colour- and spin-correlated squared tree-level amplitudes
are needed.

Being Aa1···al the amplitude of a process, one builds for every coloured
particle n = 1, . . . , l the amplitude Aa1···al a(n), where the original colour
structures have been extended by an additional factor describing the emission
of a gluon of colour a from particle n of the original process:

Aa1···an···al a(n) =
∑

a′n

(Ta)an a′n
Aa1···a′n···al , with (28)

(Ta)an a′n
=

+ 1√
2
(λa)an a′n

for incoming anti-quarks

and outgoing quarks

− 1√
2
(λa)a′n an for incoming quarks

and outgoing anti-quarks

i fan a a′n
for gluons

. (29)

Here, fa b c are the structure constants
3 of SU(Nc) and Nc = 3. In the colour-

flow formalism used by Recola, Eqs. (28) and (29) translate into

Ai1···in···il i
j1···jn···jl j(n) =

∑

i′n,j
′

n

K
i inj

′

n

j jni′n
Ai1···i′n···il

j1···j′n···jl, (30)

3The normalization for fabc is fixed by [Ta, Tb] = i fabc Tc.

12

and

K
i inj

′

n

j jni′n
=

+ δinj δii′n − 1
Nc
δini′nδ

i
j for incoming anti-quarks and out-

going quarks (jn and j′n are absent)

− δ
j′n
j δijn +

1
Nc
δ
j′n
jn
δij for incoming quarks and outgoing

anti-quarks (in and i′n are absent)

δinj δii′nδ
j′n
jn

− δini′nδ
i
jn
δ
j′n
j for gluons

,

(31)
where Ai1···il

j1···jl denotes the original amplitude, Ai1···il i
j1···jl j(n) the modified one,

and the additional gluon has colour indices (i, j).
Recola computes, at the Born level, the colour-correlated squared am-

plitude
(

A2
)

c
(n,m) between particle n and m for all pairs (n,m), defined

as

(

A2
)

c
(n,m) = cn

∑

(

Aa1···al a(n)[h1, . . . , hl]
)∗Aa1···al a(m)[h1, . . . , hl]

= cn
∑

(

Ai1···il i
j1···jl j(n)[h1, . . . , hl]

)∗Ai1···il i
j1···jl j(m)[h1, . . . , hl], (32)

where the sum is over all colour and helicity indices. The global factor cn
is given by cn = 1/(2CF) if particle n is a quark or an anti-quark and by
cn = 1/(2CA) if particle n is a gluon.4 These choices are made such that
(

A2
)

c
(n,m) is independent of the normalization chosen for (Ta)an a′n

.
In the case of a qq̄ or a gg splitting, the Catani–Seymour subtraction

formalism requires also spin correlations to build the subtraction terms
(the non-diagonal terms of Eqs. (5.8), (5.9), (5.40), (5.41), (5.67), (5.68),
(5.99), (5.100), (5.147), (5.148), (5.167), (5.168), (5.185), (5.186) of Ref. [68]).
These terms can essentially be obtained replacing the polarization vector of
the splitting gluon by an appropriate four-vector. To this end, Recola
provides, at the Born level, the spin–colour-correlated squared amplitude
(

A2
)

sc
(n,m, v) for pairs (n,m) of external gluons n and external coloured par-

ticles m. It is given by the colour-correlated squared amplitude
(

A2
)

c
(n,m)

computed with the special vector v (to be provided by the user) instead of
the usual polarization vector for gluon n.

4The Casimir operators in the fundamental and adjoint representation are defined as
∑

a(TaTa)bc = 2CFδbc and
∑

c,d facdfbcd = 2CAδab, respectively, such that CF = (N2
c −

1)/(2Nc) and CA = Nc as usual.

13

The QCD subtraction formalism of Ref. [68] can be adapted for applica-
tion to QED by replacing gluons with photons and colour with electric charge.
Due to the Abelian nature of QED, charge correlation does not involve spe-
cial amplitudes (unlike colour correlation) and can be trivially built from the
squared Born amplitude. In the subtraction method for QED, spin correla-
tion is needed in the case of a photon splitting into a fermion anti-fermion
pair, which, in an analogous manner to the QCD case, can be obtained by
replacing the polarization vector of the corresponding photon with an appro-
priate four-vector. For this purpose, Recola provides, at the Born level, the
spin-correlated squared amplitude

(

A2
)

s
(n, v) for external photons n. It is

given by the squared amplitude A2 computed with a special vector v (to be
provided by the user) instead of the usual polarization vector for photon n.

2.8. Selecting intermediate states and resonances

As a further useful feature, Recola offers the possibility to request spe-
cific intermediate states in the amplitude, i.e. to select those contributions
where the final state of the process is reached via one or more definite in-
termediate particles. The cross-section of a process is often dominated by
contributions where these intermediate states become resonant. Such contri-
butions are related to specific combinations of production and decay subpro-
cesses and can be additionally enhanced by the experimental cuts. A typical
example is the production of fermion pairs originating from the decay of a
gauge boson, e.g. in the process

u ū → g g Z → g g e+ e− , (33)

with the Z boson decaying into the e+e− pair. Recola allows to select such
specific contributions, even with multiple and nested decays, like for example

e+ e− → t (→ W+ (→ u d̄) b) t̄ (→ e− ν̄e b̄). (34)

This feature can be used to extract the resonant parts of the amplitude.
Moreover it can be employed to calculate matrix elements in the pole ap-
proximation. In this approximation, only the resonant parts of the amplitude
are kept and the residues of the poles in the amplitude are calculated with
on-shell momenta. To this end, the complex squared mass µ2 = m2− imΓ of
the resonant particle is replaced by its real part Re (µ2) = m2 everywhere in
the amplitude except for the denominators of resonant propagators where the
width Γ is kept. The latter are further evaluated off shell at p2 6= m2, while

14

the rest of the amplitude is calculated with on-shell kinematics, i.e. p2 = m2.
This mismatch is accounted for in Recola by the possibility of choosing a
different value for p2 in the denominator of the resonant propagator than in
the rest of the amplitude. At NLO, the selection of resonant contributions
to a process can be used to calculate the so-called factorizable corrections
in the pole approximation5. In addition, Recola offers the possibility to
switch off corrections of self-energy type related to the resonant propagators,
which cancel in the pole approximation.6

In order to apply the pole approximation the following steps have to be
performed:

• The potentially resonant contributions have to be selected in the pro-
cess definition (see Section 4.3 for details).

• The potentially resonant particles have to be marked as resonant (see
Section 4.2.24 for details).

• The user has to ensure that the momenta p of the resonant particles
are on the mass shell, i.e. p2 = m2.

• The squared off-shell momenta in the denominators of the resonant
propagators have to be set (see Section 4.5.1 for details).

In this way the matrix elements in the pole approximation can be obtained
at LO and for the factorizable part at NLO. The non-factorizable NLO cor-
rections are not provided by the present version of Recola.

Note that marking particles as resonant sets the widths of these particles
to zero in all defined processes. In order to calculate some of the matrix
elements within the pole approximation and others exactly, it is therefore
necessary to reset Recola and perform the integrations of the different
contributions sequentially.

5The implementation of the factorizable NLO corrections in Recola in the pole ap-
proximation has been validated for Drell–Yan processes with resonant Z and W boson, as
well as for doubly resonant processes with intermediate Z and W bosons.

6While the omission of the self-energies related to the resonance improves the numerical
stability in the pole approximation, these contributions have to be taken into account if
the pole approximation is not used.

15

2.9. Conventions

Recola uses the following symbols (of type character) for the SM par-
ticles:

Higgs boson: ’H’

Goldstone bosons: ’p0’, ’p+’, ’p-’

Vector bosons: ’g’, ’A’, ’Z’, ’W+’, ’W-’

Neutrinos: ’nu e’, ’nu mu’, ’nu tau’

Anti-Neutrinos: ’nu e~’, ’nu mu~’, ’nu tau~’

Charged leptons: ’e-’, ’e+’, ’mu-’, ’mu+’, ’tau-’, ’tau+’

Quarks: ’u’, ’d’, ’c’, ’s’, ’t’, ’b’

Anti-Quarks: ’u~’, ’d~’, ’c~’, ’s~’, ’t~’, ’b~’ .

The helicities of the external particles are described in Recola by a variable
of type character with the values [+],[-],[0], or by an integer variable
with values +1,-1,0. This value determines the spinor (polarization vector)
to be attributed to the corresponding fermion (vector boson), and is fixed to
zero for scalar particles:

Incoming fermion: [+] or +1 → u+

[-] or -1 → u−
Outgoing fermion: [+] or +1 → ū+

[-] or -1 → ū−
Incoming anti-fermion: [-] or -1 → v̄−

[+] or +1 → v̄+
Outgoing anti-fermion: [-] or -1 → v−

[+] or +1 → v+

Transverse vector boson: [+] or +1 → ǫ+
[-] or -1 → ǫ−

Longitudinal vector boson: [0] or 0 → ǫ0

Scalar boson: [0] or 0 → 1 .

The explicit expressions of the spinors and polarization vectors used in
Recola can be found in Appendix A.

For the normalization of the amplitudes we use the conventions of
Refs. [70, 71]. Accordingly, cross sections and decay widths are obtained

16

as

σ(P1, P2 → p1, . . . , pn) =
(2π)4

4
√

(P1 · P2)2 − P 2
1P

2
2

∫

dΦn(P1+P2, p1, . . . , pn)A2,

Γ(P → p1, . . . , pn) =
(2π)4

2
√
P 2

∫

dΦn(P, p1, . . . , pn)A2, (35)

with

dΦn(p, p1, . . . , pn) = δ4
(

p−
n

∑

i=1

pi

)

n
∏

i=1

d3pi
2Ei(2π)3

. (36)

The SM Feynman rules implemented in Recola follow the conventions
of Refs. [59, 71].

3. Installation

Since Recola relies on the Collier library, the installation of both
packages is required to have a working amplitude generator. The following
two options are available:

• Download of the stand-alone Recola–Collier package for a com-
bined installation of both libraries.

• Download of the Recola package alone which then has to be linked
to a local Collier installation.

Both packages are available from the web site ”http://recola.hepforge.org”.

3.1. The Recola–Collier package

The stand-alone package recola-collier-X.Y.Z contains the version
X.Y.Z of the Recola library together with a working copy of the Col-
lier library. After downloading the file recola-collier-X.Y.Z.tar.gz,
extract the tarball in the current working directory with the shell command

"tar -zxvf recola-collier-X.Y.Z.tar.gz" .

This operation creates the directory recola-collier-X.Y.Z containing the
following files and folders:

• CMakeLists.txt:
CMake makefile to produce the Collier and Recola libraries;

17

• build:
build directory, where CMake puts all files necessary for the creation
of the libraries;

• COLLIER-A.B.C:
main directory of the Collier package COLLIER-A.B.C;

• recola-X.Y.Z:
main directory of the Recola package recola-X.Y.Z (see Section 3.2
for details).

The combined compilation of Collier and Recola proceeds by chang-
ing to the build directory and executing there the shell command ”cmake
[options] ..” (creating Makefiles for Collier and Recola located in
COLLIER-A.B.C/build and recola-X.Y.Z/build, respectively), followed by
make:

"cd recola-collier-X.Y.Z/build"

"cmake [options] .."

"make" .

This requires CMake to be installed on the system. If no options are spec-
ified, CMake automatically searches for installed Fortran compilers and
chooses a suited one, e.g. gfortran. The user can force CMake to use a
specific compiler by adding in the cmake command line the option

"-D CMAKE_Fortran_COMPILER=<comp>" ,

where <comp> can be gfortran, ifort, pgf95, ... or the full path to a
compiler.

By default, the installation sequence generates Collier and Recola as
shared libraries:

• libcollier.so is created in recola-collier-X.Y.Z/COLLIER-A.B.C

and the corresponding module files are placed in the modules subdi-
rectory within this folder.

• librecola.so is created in recola-collier-X.Y.Z/recola-X.Y.Z

and the corresponding module files are placed in the modules sub-
directory within this folder.

18

The option

"-D static=ON"

causes CMake to create the static libraries libcollier.a and librecola.a

instead of the shared ones.
The packages Recola and Collier both contain a directory called

demos, where the user can find programs that illustrate the usage of the
codes. Issuing

"make <demofile>"

in the directory recola-collier-X.Y.Z/build, with <demofile> being the
name (without extension) of one of these demofiles, will compile the corre-
sponding program. The executable <demofile> is created in the respective
directory demos of Recola or Collier. More details on Recola demo
programs are given in Section 3.2; for more details on the demo programs of
Collier we refer to Ref. [48].

3.2. The Recola package

If the user wants to use his local installation7 of Collier with Recola,
he can download the archive recola-X.Y.Z.tar.gz containing only the
Recola package, in its version X.Y.Z. Extract the tarball in the current
working directory with the shell command

"tar -zxvf recola-X.Y.Z.tar.gz" .

This operation creates the directory recola-X.Y.Z containing the following
files and folders:

• CMakeLists.txt:
CMake makefile, to produce Recola library;

• build:
build directory, where CMake puts all necessary files for the creation
of the library;

• src:
Recola source directory, containing

7 Collier can be downloaded from http://collier.hepforge.org.

19

http://collier.hepforge.org/

– the source files input rcl.f90, process definition rcl.f90,
process generation rcl.f90, process computation rcl.f90,
and reset rcl.f90 with the global variables and public subrou-
tines accessible to the user;

– the directory internal with private source files which should not
be modified by the user.

• demos:
directory with demo programs illustrating the use of Recola, includ-
ing shell scripts for their compilation and execution.

The compilation of Recola proceeds by changing to the build directory
and executing there the shell command "cmake [options] .." (creating a
Makefile for Recola in recola-X.Y.Z/build), followed by make:

"cd recola-X.Y.Z/build"

"cmake [options] .."

"make [demofile]" .

This requires CMake to be installed on the system. If no options are spec-
ified, CMake automatically searches for installed Fortran compilers and
chooses a suited one. The user can force CMake to use a specific compiler
by adding in the cmake command line the option

"-D CMAKE_Fortran_COMPILER=<comp>" ,

where <comp> can be gfortran, ifort, pgf95, ... or the full path to a
compiler.

By default, the installation sequence generates Recola as shared library
librecola.so in the directory recola-X.Y.Z, with the corresponding mod-
ule files placed in the modules subdirectory. The option

"-D static=ON"

causes CMake to create the static library librecola.a instead of the shared
one.

The installation procedure further links Recola with the Collier li-
brary. If not specified otherwise, CMake assumes the existence of a folder
named COLLIER that is located in the parent directory of recola-X.Y.Z and
that contains the Collier library libcollier.so and/or libcollier.a,

20

as well as the subdirectory modules with the module files of Collier. Note
that, depending on whether Recola shall be generated as shared or as static
library, the Collier library must be present in the same format.

While the location of the libcollier.so/libcollier.a and the module
files within the Collier folder must be kept as described above, the overall
path may deviate from the default setting. In this case, the full path to the
Collier directory must be given to CMake via the option

"-D collier_path=<path to collier>" ,

where <path to collier> can be either an absolute or a relative path.
Moreover, by adding the option

"-D cmake_collier=ON"

to the cmake command line, the user can enforce that Collier is (re-)com-
piled when the installation sequence for Recola is performed8. In this case
the CMake makefile of Recola calls the CMake makefile of Collier and
generates the Collier Makefile (any existing Collier Makefile is over-
written). The subsequent execution of make in recola-X.Y.Z/build then
generates the Collier library and module files (placed in the respective
directory) in addition to Recola library and modules.

To create executables for the demo programs of Recola in the directory
demos, the command

"make <demofile>"

should be issued in the directory recola-X.Y.Z/build, with <demofile>

being either demo0 rcl, demo1 rcl, demo2 rcl or demo3 rcl. Alternatively,
the user can execute (after issuing cmake) the shell scripts run with the
command

./run <demofile>

in the demos directory. This generates and runs the respective executable
<demofile>.

The demo programs demo0 rcl, demo1 rcl, demo2 rcl, demo3 rcl ex-
emplify the usage of Recola for various purposes:

8This only works if the complete Collier package with all source files is provided in
the respective folder.

21

• demo0 rcl:
Basic usage of Recola.

• demo1 rcl:
Usage of Recola for more than one process simultaneously, with ex-
plicit modification of input parameters and with selection of specific
helicities for the external particles and of certain powers of the strong
coupling constant. In addition, files with LATEX source code for dia-
grams are generated.

• demo2 rcl:
Usage of Recola for the selection of resonant contributions and pole
approximation.

• demo3 rcl:
Usage of Recola for the computation of colour- and/or spin-
correlation.

The demos directory also contains the shell script draw-tex which com-
piles all LATEX files of the form process *.tex present in the folder and
creates the corresponding .pdf files (see Section 4.1.11 for more details). It
can be run executing

./draw-tex

in the demos directory.

4. Usage of Recola

In order to use Recola in a Fortran program, its modules have to be
loaded by including the line

use recola

in the preamble of the respective code, and the library librecola.so or
librecola.a has to be supplied to the linker. This gives access to the public
functions and subroutines of the Recola library described in the following
subsections. The names of all these routines end with the suffix “ rcl”. This
name convention is supposed to avoid conflicts with routine names present
in the master program and increases readability by allowing for an easy
identification of command lines referring to the Recola library.

Typically, an application of Recola involves the following five steps:

22

• Step 1: Setting input parameters (optional)

The input needed for the computation of SM processes can be set by the
user in two ways: either by editing the file input.f90, changing there
the values of the corresponding variables explicitly, or by making use of
subroutines provided by Recola for this purpose. While the former
option requires a recompilation of the program, the latter allows for
dynamical changes of the input parameters within the same run of the
program. Input variables and subroutines are described in Section 4.1
and Section 4.2, respectively. Since Recola provides default values
for all input parameters, this first step is optional.

• Step 2: Defining the processes

Before Recola can be employed to calculate matrix elements for
one or more processes, each process must be declared and labelled
with a unique identifier. This is done by calling the subroutine
define process rcl for every process, as described in Section 4.3.

• Step 3: Generating the processes

In the next step the subroutine generate processes rcl is called
which triggers the initialization of the complete list of processes de-
fined in step 2. As a result, all relevant building blocks for the recur-
sive computation of off-shell currents are generated (see Section 4.4 for
details).

• Step 4: Computing the processes

After the arrangements made in the previous steps, Recola is ready
to calculate amplitudes for any of the processes defined in step 2. The
computation of the amplitude and of the squared amplitude is per-
formed by means of the subroutine compute process rcl, which uses
the process-dependent information on the recursive procedure derived
in step 3. The subroutine compute process rcl is called with the mo-
menta of the external particles provided by the user. In a Monte Carlo
integration, the call of compute process rcl is repeated many times
for different phase-space points.

Recola further provides subroutines that allow to obtain particular
contributions of the amplitude or the squared amplitude. In particular,

23

it is possible to calculate colour- and/or spin-correlated squared ampli-
tudes at the Born level. Making use of the subroutines set alphas rcl

or compute running alphas rcl one can also work with a running
value for the strong coupling constant αs.

Detailed information on the subroutines that can be employed in step
4 will be given in Section 4.5.

• Step 5: resetting Recola

Finally, by calling the subroutine reset recola rcl, the process-
dependent information generated in steps 2–4 is deleted and the corre-
sponding memory is deallocated. The input variables keep their values
defined in step 1 before.

Note that these steps have to be followed in the order given above. In par-
ticular, after step 3 no new process can be defined unless Recola is reset
(step 5). After step 5 the user can restart with step 1 or step 2. More in-
formation on the allowed sequence of calls can be found in the description of
the routines below.

Examples of calls of Recola can be found in the directory demos.

4.1. Input variables

The physical input parameters and the flags steering the output are de-
clared and initialized in the file input.f90. This file contains default values
for these variables, which can be changed by the user.

4.1.1. Pole masses and widths of the SM particles

The SM particles can be grouped into massive unstable particles, charac-
terized by their mass and decay width, massive stable particles, characterized
by their mass, and massless ones. In Recola, the gluon, the photon and
the neutrinos are treated as strictly massless (though the photon and the
gluon can actually get a fictitious mass to regularize soft singularities, see
Section 4.1.3). The electron as well as the up, down and strange quarks
are considered in Recola as (potentially) massive stable particles, implying
the possibility to assign to them a non-zero mass. All other particles are
considered as (potentially) massive unstable particles, so that apart from a
non-zero mass they can also be assigned a non-zero width.

24

The mass and width variables declared in input.f90 represent the pole
mass m

P
and the pole width Γ

P
, defined from the complex pole s

P
of the

propagator as
s
P
= m2

P
− i Γ

P
m

P
. (37)

They are related to the on-shell quantities m
OS

and Γ
OS

measured at the LEP
and Tevatron experiments for the W and the Z boson via

m
P
=

m
OS

√

1 + Γ2
OS
/m2

OS

, Γ
P
=

Γ
OS

√

1 + Γ2
OS
/m2

OS

. (38)

The default values (in GeV) for the pole masses and widths in Recola are:

real(dp) :: mass_z = 91.153480619182744d0

real(dp) :: width_z = 2.4942663787728243d0

real(dp) :: mass_w = 80.357973609877547d0

real(dp) :: width_w = 2.0842989982782196d0

real(dp) :: mass_h = 125.d0, width_h = 0.d0

real(dp) :: mass_el = 0.d0

real(dp) :: mass_mu = 0.d0, width_mu = 0.d0

real(dp) :: mass_ta = 0.d0, width_ta = 0.d0

real(dp) :: mass_u = 0.d0

real(dp) :: mass_d = 0.d0

real(dp) :: mass_c = 0.d0, width_c = 0.d0

real(dp) :: mass_s = 0.d0

real(dp) :: mass_t = 173.2d0, width_t = 0.d0

real(dp) :: mass_b = 0.d0, width_b = 0.d0 ,

where dp indicates a double precision variable. The default values for the Z
and W bosons have been computed from the on-shell values

M
OS

Z = 91.1876GeV, Γ
OS

Z = 2.4952GeV,

M
OS

W = 80.385GeV, Γ
OS

W = 2.085GeV.

4.1.2. Parameters governing the treatment of collinear singularities

The treatment of collinear singularities caused by a fermion f is fixed
from the value of its pole mass mf : for mf = 0, dimensional regularization
is applied with the regularization parameters given in Section 4.1.4. For
mf 6= 0, the variable light f of type logical, which can be set individually
for each fermion f = el, mu, ta, u, d, c, s, t, b, controls how Recola deals
with the fermion mass mf :

25

• light f = .true.:
The fermion f is considered as “light”, and its non-zero pole mass mf

is kept only in mass-singular logarithms but neglected elsewhere. In
this case, mf is used as mass regulator.

• light f = .false.:
The fermion f is considered as heavy, and the full dependence on the
pole mass mf is kept.

If the pole mass of fermion f is set to mf = 0, the actual value of light f
is irrelevant. The default values of light f are

logical :: light_el = .true.

logical :: light_mu = .true.

logical :: light_ta = .true.

logical :: light_u = .true.

logical :: light_d = .true.

logical :: light_c = .true.

logical :: light_s = .true.

logical :: light_t = .false.

logical :: light_b = .true. .

4.1.3. Parameters governing the treatment of soft singularities

Soft singularities can be cured in Recola in two different ways, and
the method to be applied is selected depending on the value of the integer
variable reg soft:

• reg soft = 1:
Dimensional regularization is used with the regularization parameters
given in Section 4.1.4.

• reg soft = 2:
Mass regularization is used with regulator lambda for the photon/gluon
mass.

In the case of dimensional regularization (reg soft = 1), the value of the
variable lambda is irrelevant. Note further that mass regularization for soft
singularities (reg soft = 2) is only allowed in combination with mass reg-
ularization for all collinear singularities. Therefore, in the case of reg soft

= 2, the masses of external charged fermions must be chosen different from

26

zero for all processes. The default values for reg soft and lambda (in GeV)
are

integer :: reg_soft = 1; real(dp) :: lambda = 100d0 .

4.1.4. Dimensional regularization parameters

The conventions used by Recola for dimensional regularization have
been introduced in Section 2.2. The regularization parameters are repre-
sented by the variables (of type real(dp))

DeltaUV = ∆UV, muUV = µUV, (39)

DeltaIR = ∆IR, DeltaIR2 = ∆IR2, muIR = µIR, (40)

with the default values (in GeV for muUV and muIR)

real(dp) :: DeltaUV = 0d0, muUV = 100d0

real(dp) :: DeltaIR = 0d0, DeltaIR2 = 0d0, muIR = 100d0 .

4.1.5. Parameters for the renormalization of the QCD coupling

Recola uses an MS prescription for the renormalization of the strong
coupling constant (see Section 2.2 for details). The renormalization scheme
is fixed by the choice of the scale Q, given by the real(dp) variable Qren,
and the selection of the number of active flavours Nf , given by the integer

variable Nfren accepting the following values:

• Nfren = −1:
The variable-flavour scheme is used, and all quarks with masses lower
than Qren are considered active flavours.

• Nfren = 3, 4, 5, 6:
A fixed-flavour scheme is used, and the Nf = Nfren lightest quarks
(those with the smallest mass values) are treated as active flavours.
Note that the other quarks, which are not taken as active flavours,
must have a non-vanishing mass. By default the pole masses are
used for inactive flavours, but the masses mc, mb and mt of the three
heaviest quarks can be set exclusively for αs renormalization upon using
the subroutine set alphas masses rcl described in Section 4.2.17.

27

As numerical input, Recola needs the value for the real(dp) variable als
corresponding the QCD coupling αs(Q

2) at the scale Q in the selected flavour
scheme (see also Section 2.3). The default values for the variables introduced
in this section are (in GeV for Qren)

real(dp) :: als = 0.118d0

real(dp) :: Qren = 91.1876d0

integer :: Nfren = 5 .

4.1.6. Parameters for the renormalization of the EW coupling

The integer variable ew reno scheme allows to switch between the three
renormalization schemes for the EW coupling α implemented inRecola (see
Section 2.4):

• ew reno scheme = 1:
The GF scheme is chosen, and α is determined from the Fermi constant
GF, given by the value of the variable gf of type real(dp) .

• ew reno scheme = 2:
The α(0) scheme is chosen, and α is set to the value α(0) stored in the
variable al0 of type real(dp) .

• ew reno scheme = 3:
The α(MZ) scheme is chosen, and α is set to the value α(MZ) stored
in the variable alZ of type real(dp) .

Depending on the selected scheme, the EW coupling α is determined from
the corresponding variable gf, al0 or alZ, while the other two variables do
not enter the calculation and their actual values are thus irrelevant. The
default values (in GeV−2 for gf) are

integer :: ew_reno_scheme = 1

real(dp) :: gf = 1.16637d-5

real(dp) :: al0 = 1d0/137.035999679d0

real(dp) :: alZ = 1d0/128.936d0 .

4.1.7. Parameter for the renormalization of masses of unstable particles

For the renormalization of the masses of unstable particles, the integer
variable complex mass scheme allows to choose between the complex-mass
or the on-shell renormalization scheme (see Section 2.4):

28

• complex mass scheme = 1:
The complex-mass scheme of Refs. [52, 53, 65] is used.

• complex mass scheme = 0:
The on-shell scheme is used.

By default, the complex-mass scheme is selected:

integer :: complex_mass_scheme = 1 .

4.1.8. Parameter for self-energies of resonant particles

Whether self-energy insertions (including the corresponding counter-
terms) are taken into account for resonant particles, is determined by the
variable resSE (of type logical):

• resSE = .true.:
Self-energies of resonant particles are included in the computation of
the NLO amplitude.

• resSE = .false.:
Self-energies of resonant particles are excluded in the computation of
the NLO amplitude.

By default, self-energies of resonant particles are included:

logical :: resSE = .true. .

While the self-energies should always be included if the resonant particles
are off shell, their omission improves the numerical stability for on-shell res-
onances, where the self-energies should cancel exactly.

4.1.9. Parameter for dynamic settings of parameters

The variable dynamic settings regulates which input parameters can be
set dynamically, i.e. after the call of generate processes rcl:

• dynamic settings = 0:
Only alpha s can be reset after generate processes rcl.

• dynamic settings = 1:
In addition to alpha s also lambda, DeltaUV, muUV, DeltaIR2, DeltaIR
and muIR can be reset after generate processes rcl.

The default value is:

integer :: dynamic_settings = 0 .

29

4.1.10. Parameter for the automatic correction of external momenta

The variable momenta correction steers the intrinsic correction of exter-
nal momenta p(0:3,1:) (passed to Recola by the user in the computa-
tion phase), if they do not fulfil the mass-shell condition or four-momentum
conservation. Independently of the value of this variable Recola always
performs the following checks:

(1) Check that the dimension of the second index of p coincides with the
number of external particles.

(2) Check that all particles have positive energy larger than or equal to
their mass and that the total incoming energy is sufficient to produce
the (on-shell) outgoing particles.

(3) Check the mass-shell condition of external momenta and four-
momentum conservation.

As a result of these checks, Recola behaves as follows:

• If (1) is not fulfilled, Recola writes an error message and stops, with-
out trying to correct the input momenta.

• If (2) is not fulfilled, Recola writes an error message. If the discrep-
ancy is larger than 10−7 Recola stops. If (2) is not fulfilled but the
discrepancy is smaller than 10−7 the phase-space point is considered
unphysical and all amplitudes are set to 0. Again Recola does not
try any corrections at this point.

• If (3) is not fulfilled and momenta correction=.true., Recola writes
a warning message and tries to correct the momenta. If the correction
fails, the phase-space point is considered unphysical and all amplitudes
are set to 0.

• If (3) is not fulfilled and momenta correction=.false., Recola
writes a warning message, the phase-space point is considered unphys-
ical and all computed amplitudes are set to 0.

• Recola never stops upon performing check (3).

The default value for momenta correction is:

logical :: momenta_correction = .true.

30

4.1.11. Options for the visualization of the off-shell currents

The off-shell currents and branches used by recola as building blocks for
the construction of the amplitude (see Ref. [16] for details) can be visual-
ized as diagrams, similar to the Feynman-diagrammatic visualization of the
amplitude in the traditional approach. The integer variable draw deter-
mines the options for the generation of a file with LATEX source code for the
corresponding diagrams:

• draw = 0:
No LATEX file is generated.

• draw = 1:
For each process, a LATEX file process n.tex is created, where n is the
identifier assigned to the process in the call of define process rcl

(see Section 4.3).

After a legend, the LATEX file states the process under consideration.
According to the internal conventions of Recola, outgoing particles
are crossed into the initial state, and each particle carries an identifier
in form of a binary number. For instance, for the process uū → Zgg
the output reads:

Z + u + ū + g + g → 0
1 2 4 8 16

Then all branches needed for the tree-level amplitude are drawn, listed
following the order in which they are computed:

Tree level

2 u

1 Z

u
4 ū

1 Z

ū

1 Z

4 ū
ū

2 u

g

.

31

Next, the branches needed for the 4-dimensional bare one-loop contri-
bution are drawn, grouped according to the respective cut-particle and
listed following the order in which they are computed:

Bare loop; cut-particle: Yg

2 u

1 Z

u
4 ū

1 Z

ū

1 Z

4 ū
ū

2 u

g

.

32 Yg

1 Z

2 u

4 ū

Yg

8 g

16 g

g

Yg

Finally, the branches for the counterterm contribution and for the con-
tribution of the rational parts R2 are drawn, again listed following the
order in which they are computed:

Counterterms

2 u

1 Z

u
2 u

1 Z

u
g 0
s 1 Z

2 u

u
u

g 0
s

. ,

Rational terms

32

2 u

1 Z

u
2 u

1 Z

u
g 0
s 2 u

1 Z

u
g 2
s

.

• draw = 2:
For each process, a LATEX file is generated with the content as in the
case draw = 1, and in addition the colour structures of the incom-
ing and outgoing currents are explicitly written below each branch:

32 Yg

1 Z

2 u

4 ū

Yg

8 g

16 g

g

Yg

Incoming Colour Structures:
39 δi32j2 δij32δ

i4
j

24 δi8j16δ
i
j8δ

i16
j

Outgoing Colour Structure:

δi16j2 δi4j8δ
i8
j16

. . . .

The default value for the variable draw is

integer :: draw = 0 .

4.1.12. Output options

The integer variables writeMat, writeMat2, writeCor, and writeRAM

define to which extent output is written by Recola into the standard output
channel. Independently of the values of these parameters, Recola always
prints an initialization message followed by the values of the input parame-
ters. For default values, this output reads:

33

xx

_ _ _ _ _

|) |_ | | | | |_|

| \ |_ |_ |_| |_ | |

REcursive Computation of One Loop Amplitudes

Version 1.1

by S.Actis, A.Denner, L.Hofer, J.-N.Lang, A.Scharf, S.Uccirati

xx

--

Pole masses and widths [GeV]:

M_Z = 91.153480619183 Width_Z = 2.4942663787728

M_W = 80.357973609878 Width_W = 2.0842989982782

M_H = 125.00000000000 Width_H = 0.0000000000000

m_e = 0.0000000000000

m_mu = 0.0000000000000 Width_mu = 0.0000000000000

m_tau = 0.0000000000000 Width_tau = 0.0000000000000

m_u = 0.0000000000000

m_d = 0.0000000000000

m_c = 0.0000000000000 Width_c = 0.0000000000000

m_s = 0.0000000000000

m_t = 173.20000000000 Width_t = 0.0000000000000

m_b = 0.0000000000000 Width_b = 0.0000000000000

--

Renormalization done in the complex-mass scheme

--

EW Renormalization Scheme: gfermi Gf = 0.11663700000000E-04 GeV^-2

alpha_Gf = 0.75552541674271E-02

--

alpha_s Renormalization Scheme: 5-flavours Scheme

alpha_s(Q) = 0.11800000000000 Q = 91.187600000000 GeV

--

Delta_UV = 0.0000000000000 mu_UV = 100.00000000000 GeV

Delta_IR^2 = 0.0000000000000

Delta_IR = 0.0000000000000 mu_IR = 100.00000000000 GeV

--

Dimensional regularization for soft singularities

--

If writeMat, writeMat2, or writeCor are different from 0, the process
under consideration and the momenta of the incoming and outgoing particles

34

are printed whenever a routine is called which computes amplitudes (see
Section 2.9 for particle conventions). For example, for a phase-space point
for the process uū → Zgg the output reads:

u u~ -> Z g g

p1 = (4000.000000000, 0.000000000, 0.000000000, 4000.000000000) GeV

p2 = (4000.000000000, 0.000000000, 0.000000000,-4000.000000000) GeV

p3 = (2489.514720448,-2307.817376695, 306.489328734, -877.164509143) GeV

p4 = (2694.735905719, 1902.356873535, 1290.340022324,-1406.293907431) GeV

p5 = (2815.749373833, 405.460503160,-1596.829351058, 2283.458416573) GeV .

Output options for the amplitude

The value of the variable writeMat determines the level of detail at which
the results for the structure-dressed amplitudes A(~c,~h) (see Section 2.5) are
printed for all computed processes:

• writeMat = 0:
Nothing is printed.

• writeMat = 1:
The results of the non-vanishing A(~c,~h) are listed for each helicity con-
figuration ~h and colour structure ~c.

In order to illustrate the notation employed for helicity configurations
and colour structures, we give the output for the helicity configuration
~h = (+,−,+,+,+) and the colour structure δi2j4 δ

i4
j5
δi5j1 (see Section 2.9

for helicity conventions) in the sample process uū → Zgg:

AMPLITUDE [GeV^-1]

Helicity configuration: u[+] u~[-] -> Z[+] g[+] g[+]

i2 i4 i5

Colour structure: d d d .

j4 j5 j1

For each helicity configuration and colour structure, the results for the
Born and, if computed, one-loop amplitude are written in separate
tables:

35

gs | Born Amplitude A0

--

0 | (0.00000000000000E+00, 0.00000000000000E+00)

1 | (0.00000000000000E+00, 0.00000000000000E+00)

2 | (-0.88324465151595E-08,-0.29277610069124E-07)

3 | (0.00000000000000E+00, 0.00000000000000E+00)

--

SUM | (-0.88324465151595E-08,-0.29277610069124E-07)

gs | 1-loop Amplitude A1

--

0 | (0.00000000000000E+00, 0.00000000000000E+00)

1 | (0.00000000000000E+00, 0.00000000000000E+00)

2 | (0.14556032031458E-06, 0.82828108853855E-08)

3 | (0.00000000000000E+00, 0.00000000000000E+00)

4 | (-0.15273533002682E-05, 0.60662554073983E-05)

5 | (0.00000000000000E+00, 0.00000000000000E+00)

--

SUM | (-0.13817929799536E-05, 0.60745382182836E-05) .

The tables display the decomposition of the amplitude into contribu-
tions with different powers of the strong coupling gs (as indicated in
the first column). The last line of the tables contains the sum of all the
contributions, i.e. the full amplitude.

• writeMat = 2:
In addition to the output of writeMat = 1, Recola prints a decom-
position of the one-loop amplitude (if computed) into the 4-dimensional
bare contribution (4-dimensional bare-loop Amplitude A1d4), the
counterterm contribution (CT Amplitude A1ct) and the contribution
of the rational parts R2 (R2 Amplitude A1r2), each of them again
tabulated in powers of gs:

gs | 4-dimensional bare-loop Amplitude A1d4

--

0 | (0.00000000000000E+00, 0.00000000000000E+00)

1 | (0.00000000000000E+00, 0.00000000000000E+00)

2 | (0.13137505127039E-06, 0.84965453708879E-08)

3 | (0.00000000000000E+00, 0.00000000000000E+00)

4 | (-0.73297625052077E-06, 0.61361188439947E-05)

5 | (0.00000000000000E+00, 0.00000000000000E+00)

--

SUM | (-0.60160119925038E-06, 0.61446153893656E-05)

36

gs | CT Amplitude A1ct

--

0 | (0.00000000000000E+00, 0.00000000000000E+00)

1 | (0.00000000000000E+00, 0.00000000000000E+00)

2 | (0.11671303642281E-09,-0.14787829304366E-08)

3 | (0.00000000000000E+00, 0.00000000000000E+00)

4 | (0.52939559203394E-22,-0.99261673506363E-23)

5 | (0.00000000000000E+00, 0.00000000000000E+00)

--

SUM | (0.11671303642286E-09,-0.14787829304366E-08)

gs | R2 Amplitude A1r2

--

0 | (0.00000000000000E+00, 0.00000000000000E+00)

1 | (0.00000000000000E+00, 0.00000000000000E+00)

2 | (0.14068556007768E-07, 0.12650484449342E-08)

3 | (0.00000000000000E+00, 0.00000000000000E+00)

4 | (-0.79437704974740E-06,-0.69863436596445E-07)

5 | (0.00000000000000E+00, 0.00000000000000E+00)

--

SUM | (-0.78030849373963E-06,-0.68598388151511E-07) .

Output options for the squared amplitude

The value of the variable writeMat2 determines the level of detail at
which the results for the squared amplitudes

(

A2
)

0
and

(

A2
)

1
(defined in

Section 2.6) are printed for all computed processes:

• writeMat2 = 0:
Nothing is printed.

• writeMat2 = 1:
The result for

(

A2
)

0
, denoted as | A0 |^2, and the result for

(

A2
)

1
(if

computed), denoted as 2*Re{ A1 * A0^* } in the case of an existing
tree-level contribution and as | A1 |^2 in the case of a loop-induced
process, are written in separate tables:

UNPOLARIZED SQUARED AMPLITUDE [GeV^-2]

als | | A0 |^2 als | 2*Re{ A1 * A0^* }

----------------------------- -----------------------------

0 | 0.00000000000000E+00 0 | 0.00000000000000E+00

37

1 | 0.00000000000000E+00 1 | 0.00000000000000E+00

2 | 0.28817412651700E-06 2 | -0.12242757592358E-06

3 | 0.00000000000000E+00 3 | -0.89053802197584E-06

| 4 | 0.00000000000000E+00

----------------------------- -----------------------------

SUM | 0.28817412651700E-06 SUM | -0.10129655978994E-05 .

The tables display the decomposition of the amplitude into contribu-
tions with different powers of the strong coupling αs (as indicated in
the first column). The last line of the tables contains the sum of all the
contributions, i.e. the full squared amplitude.

• writeMat2 = 2:
The same output as in the case writeMat2 = 1 is returned, extended by
a decomposition of the squared one-loop amplitude

(

A2
)

1
(if computed)

into the 4-dimensional bare-loop contribution (2*Re{A1d4*A0^*}), the
counterterm contribution (2*Re{A1ct*A0^*}) and the contribution of
the rational parts R2 (2*Re{A1r2*A0^*}), each of them again tabulated
in powers of αs:

als | 2*Re{A1d4*A0^*} | 2*Re{A1ct*A0^*} | 2*Re{A1r2*A0^*}

0 | 0.00000000000E+00 | 0.00000000000E+00 | 0.00000000000E+00

1 | 0.00000000000E+00 | 0.00000000000E+00 | 0.00000000000E+00

2 | -0.11688477171E-06 | -0.14775782556E-08 | -0.40652259615E-08

3 | -0.86084967845E-06 | -0.10229117946E-24 | -0.29688343530E-07

4 | 0.00000000000E+00 | 0.00000000000E+00 | 0.00000000000E+00

SUM | -0.97773445015E-06 | -0.14775782556E-08 | -0.33753569492E-07 .

For loop-induced processes, six columns are printed containing the
three squared contributions |A1d4|^2, |A1ct|^2 and |A1r2|^2, and
the three interference terms 2*Re{A1d4*A1ct^*}, 2*Re{A1ct*A1r2^*}
and 2*Re{A1r2*A1d4^*}.

• writeMat2 = 3:
The same output as in the case writeMat2 = 1 is returned, extended
by a decomposition into the contributions A2

h from the single helicity

configurations ~h. In this case, the (averaged) sum is only performed
over colours. Only helicity configurations with non-vanishing contribu-
tions are displayed (for the notation see the description for writeMat
= 1):

38

POLARIZED SQUARED AMPLITUDE [GeV^-2]

Helicity configuration: u[+] u~[-] -> Z[+] g[+] g[+]

als | | A0h |^2 als | 2*Re{ A1h * A0h^* }

----------------------------- -----------------------------

0 | 0.00000000000000E+00 0 | 0.00000000000000E+00

1 | 0.00000000000000E+00 1 | 0.00000000000000E+00

2 | 0.28191064190249E-15 2 | -0.81359616022317E-15

3 | 0.00000000000000E+00 3 | -0.98362830083235E-13

| 4 | 0.00000000000000E+00

----------------------------- -----------------------------

SUM | 0.28191064190249E-15 SUM | -0.99176426243458E-13 .

Output options for spin- or colour-correlated squared amplitudes

The value of the variable writeCor determines the level of detail at which
the results for the colour- and/or spin-correlated squared tree amplitudes (see
Section 2.7) are printed for all computed processes:

• writeCor = 0:
Nothing is printed.

• writeCor = 1:
The colour-correlated squared Born amplitude

(

A2
)

c
(n,m) between all

pairs of particles n and m is shown, denoted as | A0c(n,m) |^2. For
instance, for the colour correlation between particle 1 and 3 in the
process gg → dd̄e+e− the sample output reads:

COLOUR-CORRELATED SQUARED AMPLITUDE [GeV^-4]

als | | A0c(1,3) |^2

0 | 0.00000000000000E+00

1 | 0.00000000000000E+00

2 | -0.73462206785491E-11

3 | 0.00000000000000E+00

4 | 0.00000000000000E+00

SUM | -0.73462206785491E-11 .

The spin- and colour-correlated squared Born amplitude
(

A2
)

sc
(n,m, v)

between a gluon n with special polarization vector v and an arbitrary

39

coloured particle m is shown, denoted as | A0sc(n,m) |^2. For the
example from above, it reads:

SPIN- AND COLOUR-CORRELATED SQUARED AMPLITUDE [GeV^-4]

Polarization vector v for particle 1:

v(0) = (-1151.5040504618346 , 0.0000000000000000)

v(1) = (-497.28644383654944 , 0.0000000000000000)

v(2) = (580.15008908958009 , 0.0000000000000000)

v(3) = (-1151.5040504618348 , 0.0000000000000000)

als | | A0sc(1,3) |^2

0 | 0.00000000000000E+00

1 | 0.00000000000000E+00

2 | -0.16797878275849E-05

3 | 0.00000000000000E+00

4 | 0.00000000000000E+00

SUM | -0.16797878275849E-05 ,

where v(0:3) is the polarization vector introduced by the user for the
gluon n.

The spin-correlated squared Born amplitude
(

A2
)

s
(n) for a photon n is

shown, denoted as | A0s(n) |^2. For instance, for the spin correlation
of the first photon in the process γγ → µ+ν−e+e− the sample output
reads:

SPIN-CORRELATED SQUARED AMPLITUDE [GeV^-4]

Polarization vector v for particle 1:

v(0) = (-1151.5040504618346 , 0.0000000000000000)

v(1) = (-497.28644383654944 , 0.0000000000000000)

v(2) = (580.15008908958009 , 0.0000000000000000)

v(3) = (-1151.5040504618348 , 0.0000000000000000)

als | | A0s(1) |^2

0 | 0.84005617404439E-06

1 | 0.00000000000000E+00

2 | 0.00000000000000E+00

3 | 0.00000000000000E+00

40

4 | 0.00000000000000E+00

SUM | 0.84005617404439E-06 .

By default, the output is switched off completely:

integer :: writeMat = 0

integer :: writeMat2 = 0

integer :: writeCor = 0 .

Output options for memory needed by Recola.

Recola can print information on the amount of memory (RAM) needed
in the present run. If and to which extent this information is written, is
determined by the variable writeRAM:

• writeRAM = 0:
Nothing is printed.

• writeRAM = 1:
The amount of RAM permanently blocked by the information stored
during the process generation, and the amount of RAM needed for the
process computation are written to the standard output channel. In
both cases the information is written before the memory is actually
occupied, so that it can be used in the case of a memory overflow to
detect the origin. The amount of RAM for process computation is
already shown during the process generation, i.e. before any future call
of compute process rcl that could exceed the memory limit of the
computer.

• writeRAM = 2:
The same output as in the case writeRAM=1 is returned, and in addi-
tion also the amount of RAM temporally blocked during the process
generation is printed. This memory is freed again before the end of the
generation step.

By default nothing is printed:

integer :: writeRAM = 0 .

41

4.2. Input subroutines

The variables declared in the file input.f90 and described in detail in the
previous section can be modified by the user also during run time. This is
done with the help of the following input subroutines (defined in input.f90),
which can be called at any time before the process generation is prompted
via the call of generate processes rcl. For most input subroutines, later
calls have no effect unless Recola is reset (see Section 4.6). Only certain
subroutines can also be employed at later stages, among them most notably
the subroutine set alphas rcl which can be used to work with a dynamical
renormalization scale for the strong coupling αs. In the following descrip-
tions, the possibility of calling a subroutine also after the process generation
will be emphasized explicitly, i.e. unless stated otherwise the subroutine can
only be employed before the process generation.

4.2.1. set pole mass prtcl rcl (m,g)

This subroutine sets the pole mass mass p and width width p (in GeV)
of the particle prtcl to m and g, respectively (m and g are of type real(dp)).
Here, prtcl and p can take the following values:

particle Z W Higgs muon tauon charm top bottom
quark quark quark

prtcl z w h muon tau charm top bottom
p z w h mu ta c t b .

4.2.2. set pole mass prtcl rcl (m)

This subroutine sets the pole mass mass p (in GeV) of the particle prtcl

to m (of type real(dp)). Here, prtcl and p can take the following values:

particle electron up down strange
quark quark quark

prtcl electron up down strange
p el u d s .

4.2.3. set onshell mass v rcl (m,g)

This subroutine sets the on-shell mass and width (in GeV) of the W or
Z boson, v = w, z, to m and g, respectively (m and g are of type real(dp)).
Since Recola internally works with pole masses, the values of m and g are
used to set the pole mass mass v and the pole width width v according to

mass v =
m

√

1 + g2/m2
, width v =

g
√

1 + g2/m2
. (41)

42

4.2.4. set light fermions rcl (m)

This subroutine declares all massive fermions with masses (in GeV) smal-
ler than or equal to m (of type real(dp)) as light (i.e. the variable light f
is set to .true. for each fermion f with mass f ≤ m). Massive fermions with
masses larger than m are declared heavy (i.e. the variable light f is set to
.false. for each fermion f with mass f > m). The subroutine call has no
effect on massless fermions. Details on the variables light f are given in
Section 4.1.2. Note that the assignments made by set light fermions rcl

are not adjusted in case the fermion masses should be changed later on.

4.2.5. set light ferm rcl

, unset light ferm rcl

The first subroutine marks the fermion ferm as light (i.e. it sets light f
= .true.), the second as heavy (i.e. it sets light f = .false.). Here ferm
and f can take the following values:

fermion electron muon tauon
ferm electron muon tau
f el mu ta

fermion up down charm strange top bottom
quark quark quark quark quark quark

ferm up down charm strange top bottom
f u d c s t b .

If the fermion ferm is massless the subroutine call has no effect. Details on
the variables light f are given in Section 4.1.2.

4.2.6. use dim reg soft rcl

This subroutine selects dimensional regularization for soft singularities
(i.e. it sets reg soft = 1). See Section 4.1.3 for details.

4.2.7. use mass reg soft rcl (m)

This subroutine selects mass regularization for soft singularities (i.e. it
sets reg soft = 2), and it sets (in GeV) the mass regulator to m (of type
real(dp)). See Section 4.1.3 for details.

4.2.8. set mass reg soft rcl (m)

This subroutine sets (in GeV) the mass regulator lambda for soft singu-
larities to m (of type real(dp)). See Section 4.1.3 for details.

43

4.2.9. set delta uv rcl (d)

This subroutine sets the variable DeltaUV parametrizing the UV pole to
d (of type real(dp)). See Section 4.1.4 for details.

4.2.10. set mu uv rcl (m)

This subroutine sets (in GeV) the UV scale muUV to m (of type real(dp)).
See Section 4.1.4 for details.

4.2.11. set delta ir rcl (d,d2)

This subroutine sets the variables DeltaIR and DeltaIR2 parametrizing
the IR poles to d and to d2, respectively (d and d2 are of type real(dp)).
See Section 4.1.4 for details.

4.2.12. set mu ir rcl (m)

This subroutine sets (in GeV) the IR scale muIR to m (of type real(dp)).
See Section 4.1.4 for details.

4.2.13. set alphas rcl (a,s,Nf)

This subroutine sets the value of αs (als) to a, the renormalization scale
Qren to s and the number of light quark flavours Nfren to Nf (a and s are
of type real(dp), Nf is of of type integer). Details on the parameters
als, Qren and Nfren can be found Section 4.1.5. The supplied value of a
should correspond to the physical value of αs at the scale s in the Nf-flavour
scheme. Alternatively, Recola can take care of the determination of the
corresponding αs by means of the subroutine compute running alphas rcl

introduced in Section 4.5.2. The subroutine set alphas rcl (a,s,Nf) can
be called before the process generation but also during the process compu-
tation, which allows to work with running values for αs.

4.2.14. get alphas rcl (a)

This subroutine, which can be called before the process generation but
also during the process computation, returns the current value of αs in its
output argument a (of type real(dp)).

4.2.15. get renormalization scale rcl (mu)

This subroutine, which can be called before the process generation but
also during the process computation, returns the current value of the renor-
malization scale Q (in GeV) for αs in its output argument mu (of type
real(dp)).

44

4.2.16. get flavour scheme rcl (Nf)

This subroutine, which can be called before the process generation but
also during the process computation, returns the current value of the iden-
tifier of the flavour-scheme Nfren for the renormalization of αs in its output
argument Nf (of type integer). See Section 4.1.5 for details.

4.2.17. set alphas masses rcl (mc,mb,mt,gc,gb,gt)

This subroutine overwrites the values for the charm, bottom, and top
masses that enter the counterterm of αs. By default the pole masses are used
for the inactive flavours in Eq. (7). The mass values set by this subroutine are
exclusively used in the counterterm of αs and do not enter the computation
elsewhere. This feature allows to treat inactive quarks as massless in the
calculation of the matrix elements. If the optional arguments gc,gb,gt (of
type real(dp)) are not present, the values for |mc|2, |mb|2 and |mt|2 in
Eq. (7) are set to

|mc|2 = mc2 |mb|2 = mb2, |mt|2 = mt2. (42)

Otherwise they are set to

|mc|2 = mc2

√

1 +
gc2

mc2
, |mb|2 = mb2

√

1 +
gb2

mb2
, |mt|2 = mt2

√

1 +
gt2

mt2
.

(43)
The arguments mc,mb,mt (of type real(dp)) must satisfy the condition 0 ≤
mc ≤ mb ≤ mt. The optional arguments gc,gb,gt take into account width
effects in the counterterm of αs. They can not be negative and are ignored
by Recola if the on-shell renormalization scheme is used. See Sections 2.2
and 2.3 for details.

4.2.18. use gfermi scheme rcl (g,a)

This subroutine selects the GF scheme as renormalization scheme for the
EW coupling. If the optional argument g is present, the Fermi constant GF

(gf) is set to the value of g (of type real(dp)). If instead the optional
argument a is present, the value of α is set directly to the value of a (of type
real(dp)). Only one of the two optional arguments g and a can be present:
if use gfermi scheme rcl is called with two arguments Recola writes an
error message and stops. See Sections 2.4 and 4.1.6 for details.

45

4.2.19. use alpha0 scheme rcl (a)

This subroutine selects the α(0) scheme as renormalization scheme for
the EW coupling. If the optional argument a is present, α(0) (al0) is set to
the value of a (of type real(dp)). See Sections 2.4 and 4.1.6 for details.

4.2.20. use alphaz scheme rcl (a)

This subroutine selects the α(MZ) scheme as renormalization scheme for
the EW coupling. If the optional argument a is present, α(MZ) (alZ) is set
to the value of a (of type real(dp)). See Sections 2.4 and 4.1.6 for details.

4.2.21. get alpha rcl (a)

This subroutine, which can be called before the process generation but
also during the process computation, returns the current value of α in its
output argument a (of type real(dp)).

4.2.22. set complex mass scheme rcl

This subroutine selects the complex-mass scheme of Refs. [52, 53, 65]
for the renormalization of the masses of unstable particles (i.e. it sets
complex mass scheme = 1). See Section 4.1.7 for details.

4.2.23. set on shell scheme rcl

This subroutine selects the on-shell scheme for the mass renormaliza-
tion of unstable particles (i.e. it sets complex mass scheme = 0). See
Section 4.1.7 for details.

4.2.24. set resonant particle rcl (pa)

This subroutine is only needed if processes are defined with specific in-
termediate particles and the pole approximation shall be applied to the cor-
responding resonances (see Section 4.3.1 and Section 2.8). It marks particle
pa as resonant. The argument pa can be any of the characters listed in
Section 2.9 for the SM particles.

If a particle is labelled resonant, Recola sets the imaginary part of its
mass to zero everywhere except in the denominator of the resonant propa-
gators. If the width of the particle pa is zero, Recola stops. During com-
putation, Recola furthermore checks that the phase-space point provided
by the user fulfils the condition that the squared momenta of all resonant
particles pa are on shell (if this does not hold within a precision of 10−7,
Recola stops).

46

Calling set resonant particle rcl (pa) affects all compute X rcl

calls of Section 4.5, i.e. the pole approximation is also applied to colour-
and/or spin-correlated squared amplitudes.

4.2.25. switchon resonant selfenergies rcl

This subroutine sets the value of resSE to .true. (see Section 4.1.8 for
details).

4.2.26. switchoff resonant selfenergies rcl

This subroutine sets the value of resSE to .false. (see Section 4.1.8 for
details).

4.2.27. set dynamic settings rcl (n)

This subroutine sets the variable dynamic settings, governing the pos-
sibility to set dynamically some parameters, to n (of type integer). See
Section 4.1.9 for details.

4.2.28. set momenta correction rcl (mc)

This subroutine sets the variable momenta correction, governing the
automatic correction of external momenta, to mc (of type logical). See
Section 4.1.10 for details.

4.2.29. set draw level branches rcl (n)

This subroutine sets the variable draw for the generation of a LATEX
file with diagrams of the off-shell currents to n (of type integer). See
Section 4.1.11 for details.

4.2.30. set print level amplitude rcl (n)

This subroutine, which can be called before the process generation but
also during the process computation, sets the variable writeMat governing
the output of amplitudes to n (of type integer). See Section 4.1.12 for
details.

4.2.31. set print level squared amplitude rcl (n)

This subroutine, which can be called before the process generation but
also during the process computation, sets the variable writeMat2 governing
the output of squared amplitudes to n (of type integer). See Section 4.1.12
for details.

47

4.2.32. set print level correlations rcl (n)

This subroutine, which can be called before the process generation but
also during the process computation, sets the variable writeCor governing
the output of colour- and spin-correlated squared amplitudes to n (of type
integer). See Section 4.1.12 for details.

4.2.33. set print level RAM rcl (n)

This subroutine sets the variable writeRAM governing the output of in-
formation on the amount of RAM needed to n (of type integer). See
Section 4.1.12 for details.

4.2.34. scale coupling3 rcl (fac,pa1,pa2,pa3)

This subroutine scales the 3-particle coupling between particles pa1, pa2,
and pa3 by a factor fac (of type complex(dp)). The arguments pa1, pa2,
and pa3 can be any of the characters listed in Section 2.9 for the SM particles.
Remark: The rescaling of couplings in the counterterms and rational terms
is not yet implemented.

4.2.35. scale coupling4 rcl (fac,pa1,pa2,pa3,pa4)

This subroutine scales the 4-particle coupling between particles pa1, pa2,
pa3, and pa4 by a factor fac (of type complex(dp)). The arguments pa1,
pa2, pa3, and pa4 can be any of the characters listed in Section 2.9 for the
SM particles.
Remark: The rescaling of couplings in the counterterms and rational terms
is not yet implemented.

4.2.36. switchoff coupling3 rcl (pa1,pa2,pa3)

This subroutine switches off the 3-particle coupling between pa1, pa2,
and pa3. The arguments pa1, pa2, and pa3 can be any of the characters
listed in Section 2.9 for the SM particles.
Remark: The switching off of couplings in the counterterms and rational
terms is not yet implemented.

4.2.37. switchoff coupling4 rcl (pa1,pa2,pa3,pa4)

This subroutine switches off the 4-particle coupling between pa1, pa2,
pa3, and pa4. The arguments pa1, pa2, pa3, and pa4 can be any of the
characters listed in Section 2.9 for the SM particles.
Remark: The switching off of couplings in the counterterms and rational
terms is not yet implemented.

48

4.2.38. set ifail rcl (i)

This subroutine, which can be called before the process generation but
also during the process computation, sets the flag ifail to the integer value
i given by the user. On input the flag ifail determines the behaviour of
Recola upon encountering an internal error:

• ifail = -1: Execution of the program does not stop if an error occurs;

• ifail = 0: Execution of the program stops if an error occurs.

By default, the flag ifail is set to 0.

4.2.39. get ifail rcl (i)

This subroutine, which can be called before the process generation but
also during the process computation, extracts the value of the flag ifail,
returning it as integer argument i to the user. On output, the flag ifail

provides information about the appearance of an error during the run of
Recola.

• ifail = 0: No errors occurred;

• ifail = 1: An error occurred due to an inconsistent call of a subrou-
tine by the user;

• ifail = 2: An error occurred due to an unexpected problem within
Recola.

4.2.40. set output file rcl (x)

This subroutine, which can be called before the process generation but
also during the process computation, opens the output file named x (x is
of type character). Any output produced by Recola is written to the
output file x, which is created with the first call of set output file rcl

(if it already exists, its content is cleared). For any subsequent call of
set output file rcl with different argument a new output file is opened,
and if it exists its content is cleared. Redirecting the output to an already
open output file does not clear the content and new output is appended. Out-
put files remain open unless recola is reset by the call of reset recola rcl.

If the argument x = ’*’ is passed to set output file rcl, the output
is written into the terminal (standard output channel).

By default, the output is written to the file output.rcl, placed in the
current working directory. The call of reset recola rcl resets the output
file name to the default value output.rcl.

49

4.3. Process definition

Processes are declared by calling the subroutine define process rcl de-
fined in the file process definition.f90. This file also contains subroutines
for the selection/unselection of contributions to the amplitude with specific
powers of the strong coupling gs (defined by g2s = 4παs) and a subroutine
for the splitting of the cache of Collier into several parts. For a process
with identifier npr, these subroutines can be called at any point after the
declaration of the process npr via define process rcl, and before the com-
plete set of processes is generated by the call of generate processes rcl.
If no specific selection is made by the user, by default the contributions of
all powers of gs are computed. Since the contributions to the amplitude are
proportional to gns

s en−ns with n unambiguously fixed from the chosen process
(and the selection of LO or NLO), the powers of the electromagnetic coupling
e (defined by e2 = 4πα) are implicitly determined by the powers of gs.

4.3.1. define process rcl (npr,processIn,order)

With this subroutine, the user defines the process(es) he wants to be
computed. The integer argument npr is assigned as identifier to the process
specified by the argument processIn (of type character). Issuing repeated
calls of define process rcl, it is possible to define more than one process.
In this case, each process processIn must be given a different identifier npr
(calls of define process rcl with an already existing identifier are ignored).
The argument order of type character can take the values ’LO’ and ’NLO’:
For order=’LO’, the process will be generated such that Recola will be able
to evaluate only LO amplitudes, while for order=’NLO’ it will be generated
such that Recola will be able to evaluate both LO and NLO amplitudes.

The string processIn must consist of a list of particles separated by
’->’, with the incoming (outgoing) particles on the left-hand (right-hand)
side of ’->’. Any number of incoming and outgoing particles is allowed. The
symbols for the particles, listed in Section 2.9, as well as the symbol ’->’
must be separated by at least one blank character. Examples of allowed
character chains for processIn are

’e+ e- -> mu+ mu-’ ,

’u u~ -> W+ W- g’ ,

’u d~ -> W+ g g g’ ,

’u g -> u g Z’ ,

’u g -> u g tau- tau+’ .

50

To each fermion or vector particle a specific helicity can be attributed by
adding the corresponding symbol ’[-]’, ’[+]’ or ’[0]’ (see Section 2.9 for
the definition of the helicity symbols). Blank characters can (but need not)
separate the helicity symbol from the particle name:

’e+[+] e- [-] -> Z H’: ’e+’ is right-handed, ’e-’ is left-handed,
’Z’ is unpolarized.

’u u~ -> W+[-] W-[+]’: ’u’ and ’u~’ are unpolarized,
’W+’ and ’W-’ are transverse.

Contributions with specific intermediate states can be selected (see
Section 2.8), where intermediate states are particles decaying into any num-
ber of other particles. To this end, in the process declaration the decaying
particle must be followed by round brackets ’(...)’ containing the de-
cay products. Multiple and nested decays are allowed. Blank characters can
(but need not) separate the brackets ’(’, ’)’ from the particle names:

’e+ e- -> W+ W-(e- nu_e~)’ ,

’e+ e- -> Z H (b~[+] b[-])’ ,

’e+ e- -> t(W+(u d~) b) t~(e- nu_e~ b~)’ ,

’u u~ -> Z (mu+(e+ nu_e nu_mu~) mu-(e- nu_e~ nu_mu)) H’ .

The selection of specific intermediate particles is a prerequisite for the cal-
culation of amplitudes within the pole approximation.

4.3.2. set gs power rcl (npr,gsarray)

This subroutine selects specific powers of gs, as specified by the argument
gsarray, for the process with identifier npr (of type integer). The elements
of the two-dimensional integer array gsarray(0 : ,0 : 1) can take the values
0 or 1, with the first index representing the power of gs and the second one
representing the loop order (0 for LO, 1 for NLO). For instance, a call of
set gs power rcl with second argument

gsarray(0,0) = 1

gsarray(1,0) = 0

gsarray(2,0) = 1

gsarray(0,1) = 0

gsarray(1,1) = 0

gsarray(2,1) = 0

gsarray(3,1) = 0

gsarray(4,1) = 1

51

selects the contributions with g0s and g2s for the tree amplitude and the g4s
contribution for the loop amplitude. All other contributions will not be
computed in later evaluations of the amplitudes. By default, all contributions
are switched on.

4.3.3. select gs power BornAmpl rcl (npr,gspower)

,
unselect gs power BornAmpl rcl (npr,gspower)

This pair of subroutines allows to select/unselect the contribution to the
Born amplitude proportional to gns , where n is given by the integer argu-
ment gspower, for the process with identifier npr (of type integer). All
other contributions to the Born amplitude keep their status (selected or un-
selected), according to previous calls of selection subroutines. The selection
of the contributions to the loop amplitude remains unaffected as well.

4.3.4. select gs power LoopAmpl rcl (npr,gspower)

,
unselect gs power LoopAmpl rcl (npr,gspower)

This pair of subroutines allows to select/unselect the contribution to the
loop amplitude proportional to gns , where n is given by the integer argument
gspower, for the process with identifier npr (of type integer). All other
contributions to the loop amplitude keep their status (selected or unselected),
according to previous calls of selection subroutines. The selection of the
contributions to the Born amplitude remains unaffected as well.

4.3.5. select all gs powers BornAmpl rcl (npr)

,
unselect all gs powers BornAmpl rcl (npr)

This pair of subroutines allows to select/unselect all contributions to the
Born amplitude (with any power of gs) for the process with identifier npr

(of type integer). The selection of the contributions to the loop amplitude
remains unaffected.

4.3.6. select all gs powers LoopAmpl rcl (npr)

,
unselect all gs powers LoopAmpl rcl (npr)

This pair of subroutines allows to select/unselect all contributions to the
loop amplitude (with any power of gs) for the process with identifier npr (of

52

type integer). The selection of the contributions to the Born amplitude
remains unaffected.

4.3.7. split collier cache rcl (npr,n)

This subroutine splits the cache of Collier for the process with identifier
npr (of type integer) into n (of type integer) separate sub-caches. This
allows the user to bypass a possible memory problem connected with the size
of the cache of Collier for complicated processes. Note, however, that this
procedure can lead to a reduction of the efficiency of the cache system and
should thus only be employed if memory problems are encountered in the
default run mode.

4.4. Process generation: generate processes rcl

The file process generation.f90 only contains the single subroutine
generate processes rcl for the generation of the processes. This subrou-
tine constructs the skeleton of the recursive procedure for all processes pre-
viously defined by the user, and stores it in global variables that later on are
used by Recola for the computation of amplitudes. It must be called once
after all processes are defined and before the subroutines for process compu-
tation contained in process computation.f90 can be called. It is typically
called before the phase-space points are generated.

4.5. Process computation

The amplitude and the squared amplitude for a process are com-
puted by calling the subroutine compute process rcl. Their values are
stored in internal variables labelled by the process identifier and the
loop order and can be read out with the subroutines get amplitude rcl,
get polarized squared amplitude rcl and get squared amplitude rcl.
After the computation, the amplitudes and squared amplitudes can be
rescaled for a new value of αs with the subroutine rescale process rcl

(which overwrites the stored results for the given process at the given order).
The typical sequence is

call compute_process_rcl(npr,...)

call get_A_rcl(npr,...) ,

possibly followed (after a redefinition of αs through set alphas rcl or
compute running alphas rcl) by several calls of

53

call rescale_process_rcl(npr,...)

call get_A_rcl(npr,...) ,

where npr is the process identifier and A stands for amplitude,
polarized squared amplitude and/or squared amplitude.

Further subroutines of type compute X correlation rcl and
rescale X correlation rcl (where X stands for colour, spin

or spin colour) are provided for the computation of spin- and/or
colour-correlated squared Born amplitudes. For colour correla-
tion also the routines compute all colour correlations rcl and
rescale all colour correlations rcl are available. These subroutines
compute (or rescale) the LO amplitudes and the LO spin- and/or colour-
correlated squared amplitudes, storing the results in internal variables (for
LO amplitudes these variables are the same as for compute process rcl and
rescale process rcl). Previously computed results of these LO objects
for the given process are overwritten. The stored results for the spin- and/or
colour-correlated squared Born amplitudes can be read out by the user with
the subroutines of type get X correlation rcl. The typical sequence for
the evaluation of spin- and/or colour-correlated squared Born amplitudes is

call compute_X_correlation_rcl(npr,...)

call get_X_correlation_rcl(npr,...) ,

possibly followed (after a redefinition of αs) by several calls

call rescale_X_correlation_rcl(npr,...)

call get_X_correlation_rcl(npr,...)

for rescaling the LO amplitudes and spin- and/or colour-correlated ampli-
tudes.

Note that a call of compute Y rcl or rescale Y rcl followed by a call of
compute Y ′ rcl or rescale Y ′ rcl (with Y ,Y ′ = process, X correlation,
all colour correlations) will lead to a recalculation of LO amplitudes
for process npr that overwrites results previously obtained in the calls for
Y for that process. In this case the results for the amplitudes calculated
with compute Y rcl or rescale Y rcl cannot be accessed anymore. It
is thus advisable to conclude the call sequence for an object Y , before a
different object Y ′ is evaluated. More details are given in the description of
the individual subroutines.

54

All these subroutines are defined in the file process computation.f90,
together with the subroutine compute running alphas rcl that al-
lows for the dynamical computation of αs and the subroutine
set resonant squared momentum rcl which enables the user to set the
squared momentum of the denominator of resonant propagators.

4.5.1. set resonant squared momentum rcl (npr,res,ps)

This subroutine is only relevant for processes defined with intermediate
particles (see Section 4.3.1 and Section 2.8). It acts on the resonance with
identifier res (of type integer) in the process with identifier npr (of type
integer) in the following way:

• it checks whether the resonant particle corresponding to res has been
marked resonant through the subroutine set resonant particle rcl

(see Section 4.2.24);

• it sets the squared momentum in the denominator of the resonant prop-
agator to ps (of type real(dp)).

The resonance identifier res is derived from the process definition in the call
of define process rcl. The first resonant particle defined there is labelled
with res = 1, the second with res = 2, and so on. For example, in the
process

’e+ e- -> t(W+(u d~) b) t~(e- nu_e~ b~)’ ,

the first resonant particle (res = 1) is the top-quark, the second (res = 2)
the W+, and the third (res = 3) the anti-top quark. In order to take effect on
the calculation, this subroutine must be called before compute process rcl.

4.5.2. compute running alphas rcl (Q,Nf,lp)

This subroutine can be called to compute the value for αs at the scale
Q employing the renormalization-group evolution at lp loops (Q is of type
real(dp), the integer argument lp can take the value lp=1 or lp=2). The
integer argument Nf selects the flavour scheme according to the following
rules (see also Sections 2.2 and 2.3):

• Nf = -1:
The variable flavour scheme is selected, where the number of active
flavours contributing to the running of αs is set to the number of quarks
lighter than the scale Q.

55

• Nf = 3,4,5,6:
The fixed Nf-flavour scheme is selected, where the number of active
flavours contributing to the running of αs is set to Nf = Nf. In this case
Nf cannot be smaller than the number of massless quarks (otherwise
the code stops).

By calling the subroutine compute running alphas rcl the new value of
αs is internally computed by Recola according to the formulas given in
Section 2.3. Using this subroutine (or alternatively set alphas rcl) after
the call of generate processes rcl, the user can assign a different value to
αs at each phase-space point.

4.5.3. compute process rcl (npr,p,order,A2,momenta check)

This subroutine computes the Born contribution A(~c,~h)
0 and the one-loop

contribution A(~c,~h)
1 to the structure-dressed amplitude A(~c,~h) (see Section 2.5)

of the process with identifier npr (of type integer) for all values of ~c and
~h. It further computes the squared amplitudes

(

A2
)

0
and

(

A2
)

1
as defined

in Section 2.6. The argument order (of type character) can take the two
values ’LO’ and ’NLO’. The one-loop contributions are only computed if
order=’NLO’ and if the process has been defined at NLO in the call of
define process rcl (see Section 4.3.1). In the computation of the squared
amplitude a sum/average is performed over helicities and colours; for parti-
cles that have been defined with a specific helicity, no helicity sum/average
is carried out. The results for the amplitudes and squared amplitudes
are stored in internal variables (overwriting previous computed results for
amplitudes and squared amplitudes for process npr up to order order)
that can be read out by the user with the subroutines get amplitude rcl,
get polarized squared amplitude rcl and get squared amplitude rcl.

The input array p(0:3,1:l) of type real(dp) should be filled with the
momenta pµi of the l external particles of the process npr. The first index
of p refers to the Lorentz index µ, the second to the particle index i of pµi ,
with the particles ordered according to their position in the process definition.
The optional output argument A2(0:1) is a vector of type real(dp). Its two
entries, A2(0) and A2(1), return the values for

(

A2
)

0
and

(

A2
)

1
, respectively,

with the contributions from all selected powers of αs summed up.
The optional output argument momenta check (of type logical) is set

to .true. if the momenta provided by the user have passed the checks (see
Section 4.1.10), otherwise it is set to .false.. Note that, in case the checks

56

are not fulfilled, no computation is performed and the amplitudes are set to
zero.
4.5.4. rescale process rcl (npr,order,A2)

This subroutine allows to adjust the results calculated by
compute process rcl for a new value of αs, without recomputing the
amplitudes (this is done by rescaling LO and NLO amplitudes and
recomputing the counterterm for the strong coupling). The user first
calls compute process rcl for a process with identifier npr (of type
integer) at order order (of type character taking the two values ’LO’

or ’NLO’), then sets a new value for αs (by means of set alphas rcl or
compute running alphas rcl) and finally calls rescale process rcl with
the same process identifier npr.

The call of rescale process rcl leads to rescaling of the stored results
for amplitudes and squared amplitudes for process npr up to order order

and overwrites previous results (order=’NLO’ requires that the original call
of compute process rcl had been evaluated at NLO).

The adjusted results can be obtained with help of the subrou-
tines get amplitude rcl, get polarized squared amplitude rcl and
get squared amplitude rcl or via the optional output argument A2(0:1)
(defined as for compute process rcl).

4.5.5. get colour configurations rcl (npr,cols)

This subroutine writes all colour configurations of the process with iden-
tifier npr (of type integer) to the output variable cols (of type integer,
allocatable, dimension(2)), which must be unallocated. This variable is
allocated by the subroutine, and the dimension of its second argument is set
to the total number of colour structures, which depends on the process under
consideration. The variable cols(1:l,n) describes the nth colour structure
and is a vector of length l. Each position in the vector corresponds to one
of the l external particles of process with identifier npr (ordered as in the
process definition). For colourless particles, incoming quarks and outgoing
anti-quarks the corresponding value in cols is 0. For all other particles
(gluons, outgoing quarks and incoming anti-quarks), the entries are permu-
tations, without repetition, of the positions of the gluons, incoming quarks or
outgoing anti-quarks in the process definition. The variable cols(1:l,n) can
be used as the input variable colour in the subroutine get amplitude rcl.
See Section 2.5 for details.

57

Note that Recola does not deallocate the output variable cols which
has to be taken care of by the user.

4.5.6. get helicity configurations rcl (npr,hels)

This subroutine writes all helicity configurations of the process with iden-
tifier npr (of type integer) to the output variable hels (of type integer,
allocatable, dimension(2)), which must be unallocated. This variable is
allocated by the subroutine, and the dimension of its second argument is set
to the total number of helicity configurations, which depends on the process
under consideration. The variable hels(1:l,n) describes the nth helicity con-
figuration and is a vector of length l. Each position in the vector corresponds
to one of the l external particles of process with identifier npr (ordered as
in the process definition). Its values are the helicities of the particles at
the corresponding position in the vector. For scalar particles the value is 0.
For fermions the value can be −1 and +1 for left and right-handed (anti-
)fermions, respectively. For vector bosons the value can be −1, +1 and 0 for
left-and right-transverse and longitudinal polarizations, respectively. The
variable hels(1:l,n) can be used as the input variable hel in the subrou-
tines get amplitude rcl and get polarized squared amplitude rcl. See
Section 2.5 for details.

Note that Recola does not deallocate the output variable hels which has
to be taken care of by the user.

4.5.7. get amplitude rcl (npr,pow,order,colour,hel,A)

This subroutine extracts a specific contribution to the structure-dressed

amplitude A(~c,~h)
0 or A(~c,~h)

1 (see Section 2.5) of the process with identifier npr
(of type integer), according to the values of the arguments pow, order,
colour and hel:

• pow is of type integer and specifies the power of gs of the contribution.

• order represents the loop order of the contribution. It is a variable of
type character accepting precisely the following values:

’LO’: Born amplitude,
’NLO’: complete one-loop amplitude,
’NLO-D4’: bare 4-dimensional one-loop amplitude,
’NLO-CT’: counterterm contribution to the one-loop amplitude,
’NLO-R2’: rational-term contribution to the one-loop amplitude.

58

• colour(1:l) describes the colour structure ~c and is a vector of type
integer and length l, where each position in the vector corresponds
to one of the l external particles of process npr (ordered as in the
process definition). For colourless particles, incoming quarks and out-
going anti-quarks, the corresponding entry in colour must be 0. For
all other particles (gluons, outgoing quarks and incoming anti-quarks),
the entries must be, without repetition, the positions of the gluons,
incoming quarks and outgoing anti-quarks in the process definition. If
k1, k2, . . . , kn (n ≤ l) are the positions in colour that contain non-zero
entries, andm1, m2, . . . , mn are the respective entries, then colour rep-

resents the colour structure δ
ik1
jm1

δ
ik2
jm2

· · · δiknjmn
.

Example:

Process: ’u u~ -> Z g g’

Position: 1 2 3 4 5 .

The vector colour has length 5. The 1st and the 3rd entry correspond-
ing to the up quark and the Z boson must be 0 (incoming quark and
colourless particle). The other entries (2nd, 4th and 5th) must be filled
with a permutation of the values {1, 4, 5}, i.e. the positions of the in-
coming up quark and the gluons.

Hence, a possible colour vector is

colour(1:5) = [0,1,0,5,4],

corresponding to the colour structure δi2j1 δ
i4
j5
δi5j4 .

• hel(1:l) describes the helicity configuration ~h and is a vector of type
integer and length l, where each position in the vector corresponds
to one of the l external particles of process npr (ordered as in the pro-
cess definition). Its entries represent the helicities of the corresponding
particles, according to the conventions of Section 2.9.

Example:

Process: ’u g -> W+ d’

A possible hel vector is

hel(1:4) = [-1,+1,-1,-1]

corresponding to the following helicities:

59

up quark → helicity = −1,
gluon → helicity = +1,
W+ → helicity = −1,
down quark → helicity = −1.

The argument A of type complex(dp) delivers the output consisting of the
value of the amplitude for process npr as stored in internal variables. Any
call of a subroutine of type compute X rcl or rescale X rcl with the
same process identifier npr (partially) overwrites these internal variables. In
order to extract the results from the last process computation, the subrou-
tine get amplitude rcl should thus be called after compute process rcl

or rescale process rcl and before a different subroutine call of type
compute Y rcl or rescale Y rcl is issued for the same process npr. When
called at order=’LO’ after compute Y rcl or rescale Y rcl with Y be-
ing colour correlation, spin correlation, spin colour correlation or
all colour correlations, the subroutine get amplitude rcl will return
the LO matrix element entering the calculation of the corresponding corre-
lated squared amplitude.

4.5.8. get squared amplitude rcl (npr,pow,order,A2)

This subroutine extracts the computed value of the squared amplitude
(

A2
)

0
or

(

A2
)

1
(see Section 2.6 and Section 4.5.3 for details on the definition

of squared amplitudes) for the process with identifier npr (of type integer),
according to the values of the arguments pow and order:

• pow is of type integer and specifies the power of αs of the contribution.

• order represents the loop order of the contribution. It is variable of
type character accepting the following values:

’LO’: squared Born amplitude,
’NLO’: complete one-loop squared amplitude,
’NLO-D4’: bare 4-dimensional one-loop squared amplitude,
’NLO-CT’: counterterm contribution to the

one-loop squared amplitude,
’NLO-R2’: rational-term contribution to the

one-loop squared amplitude.

The argument A2 of type real(dp) delivers the output consisting of the
value of the squared amplitudes from the last call of compute process rcl

or rescale process rcl for the process with process number npr.

60

4.5.9. get polarized squared amplitude rcl

(npr,pow,order,hel,A2h)

This subroutine extracts the computed value for the contribution A2
h cor-

responding to the polarization h = hel to the squared amplitude for the
process with identifier npr (of type integer), according to the values of
the arguments pow and order. The definition of the arguments pow and
order is described in Section 4.5.8, while the definition of hel is described
in Section 4.5.7.

The argument A2h of type real(dp) delivers the output consisting
of the value of the polarized squared amplitude from the last call of
compute process rcl or rescale process rcl for the process with process
number npr.

4.5.10. compute colour correlation rcl

(npr,p,i1,i2,A2cc,momenta check)

This subroutine computes the LO amplitudes A(~c,~h)
0 and the specific

colour-correlated squared amplitudes
(

A2
)

c
(i1, i2) for the pair (i1, i2) of ex-

ternal particles (see Section 2.7 for details) for the process with identifier
npr (of type integer). The integer arguments i1 and i2 denote the posi-
tion identifiers of the respective external particles (ordered as in the process
definition). In the computation of the squared amplitude a sum/average is
performed over helicities and colours (see Section 2.6 for details on the def-
inition of squared amplitudes); for particles that have been defined with a
specific helicity, no helicity sum/average is performed.

The definition of the input argument p(0:3,1:l) of type real(dp) is
described in Section 4.5.3.

The results for the LO amplitudes and the colour-correlated squared am-
plitudes are stored in internal variables (overwriting previously computed
results for LO amplitudes and colour-correlated squared amplitudes for pro-
cess npr and particle pair (i1,i2)). The values of the colour-correlated
squared amplitudes

(

A2
)

c
(i1, i2) can be read out by the user with the sub-

routine get colour correlation rcl. The optional output argument A2cc
(of type real(dp)) returns the value for the colour-correlated squared am-
plitude, with the contributions from all selected powers of αs summed up.

The optional output argument momenta check (of type logical) behaves
as explained at the end of Section 4.5.3.

61

4.5.11. compute all colour correlations rcl (npr,p,momenta check)

This subroutine computes the LO amplitudes A(~c,~h)
0 and the colour-

correlated squared amplitudes
(

A2
)

c
(i, j) for all pairs (i, j) of external

coloured particles (see Section 2.7 for details) for the process with identi-
fier npr (of type integer). In the computation of the squared amplitude
a sum/average is performed over helicities and colours (see Section 2.6 for
details on the definition of squared amplitudes); for particles that have been
defined with a specific helicity, no helicity sum/average is performed.

The definition of input argument p(0:3,1:l) of type real(dp) is de-
scribed in Section 4.5.3.

The results for the LO amplitudes and the colour-correlated squared am-
plitudes are stored in internal variables (overwriting previously computed re-
sults for LO amplitudes and colour-correlated squared amplitudes for process
npr). The values of the colour-correlated squared amplitudes

(

A2
)

c
(i, j) can

be read out by the user with the subroutine get colour correlation rcl.
The optional output argument momenta check (of type logical) behaves

as explained at the end of Section 4.5.3.

4.5.12. rescale colour correlation rcl (npr,i1,i2,A2cc)

This subroutine can be employed to rescale the results cal-
culated by the subroutines compute all colour correlations rcl or
compute colour correlation rcl to a different value of αs. To
this end, the user first sets a new value for αs (by means
of set alphas rcl or compute running alphas rcl) and then calls
rescale colour correlation rcl with a process identifier npr and posi-
tion identifiers i1 and i2 for the respective external particles (npr, i1, and
i2 are of type integer). This leads to a rescaling of the stored results for

the LO amplitudes A(~c,~h)
0 and for the colour-correlated squared amplitudes

(

A2
)

c
(i1, i2) for the process npr and the pair (i1,i2) of coloured external

particles, overwriting previous results. The rescaled values of the colour-
correlated squared amplitudes

(

A2
)

c
(i1, i2) can be either obtained with help

of the subroutine get colour correlation rcl or via the optional output
argument A2cc (defined as for compute colour correlation rcl).

4.5.13. rescale all colour correlations rcl (npr)

This subroutine can be used to rescale the results calcu-
lated by the subroutine compute all colour correlations rcl or

62

compute colour correlation rcl to a different value of αs. To
this end, the user first sets a new value for αs (by means of
set alphas rcl or compute running alphas rcl) and then calls
rescale all colour correlations rcl with a process identifier npr

(of type integer). This leads to a rescaling of the stored results for the

LO amplitudes A(~c,~h)
0 and for the colour-correlated squared amplitudes

(

A2
)

c
(i, j) for the process npr and all pairs (i, j) of external coloured

particles, overwriting previous results. The rescaled values of the colour-
correlated squared amplitudes

(

A2
)

c
(i, j) can be obtained with help of the

subroutine get colour correlation rcl.

4.5.14. get colour correlation rcl (npr,pow,i1,i2,A2cc)

This subroutine extracts the computed value of the LO colour-correlated
squared amplitude

(

A2
)

c
(i1, i2) for the pair (i1, i2) of external particles (see

Section 2.7 for details) for the process with identifier npr (of type integer).
The integer arguments i1 and i2 denote the position identifiers of the
respective external particles (ordered as in the process definition). The
integer argument pow specifies the power of αs of the contribution to be
extracted.

The argument A2cc of type real(dp) delivers the output of
the subroutine consisting of the value of the LO colour-correlated
squared amplitudes for particle pair (i1,i2) from the last call of
compute colour correlation rcl or rescale colour correlation rcl

for the process with process number npr and external coloured particles
(i1,i2), or from the last call of compute all colour correlations rcl or
rescale all colour correlations rcl for the process with process num-
ber npr.

4.5.15. compute spin correlation rcl

(npr,p,j,v,A2sc,momenta check)

This subroutine computes the LO amplitudes A(~c,~h)
0 and the spin-

correlated squared amplitude
(

A2
)

s
(j) for the photon j in the process with

identifier npr (of type integer), using as polarization vector for the photon
j the four-vector v provided by the user (see Section 2.7 for details). The
integer argument j denotes the position identifier of the respective pho-
ton (following the order of external particles in the process definition). The
vector v(0:3) (of type complex(dp)) denotes the user-defined four-vector
substituting the polarization vector of photon j. In the computation of the

63

squared amplitude a sum/average is performed over helicities and colours
(see Section 2.6 for details on the definition of squared amplitudes); for par-
ticles that have been defined with a specific helicity as well as for the photon
j, no helicity sum/average is performed.

The results for the LO amplitudes and the spin-correlated squared am-
plitudes are stored in internal variables (overwriting previously computed re-
sults for LO amplitudes and spin-correlated squared amplitudes for process
npr). The values of the spin-correlated squared amplitudes

(

A2
)

s
(j) can be

read out by the user with the subroutine get spin correlation rcl. The
optional output argument A2sc (of type real(dp)) returns the value for the
spin-correlated squared amplitude with the contributions from all selected
powers of αs summed up.

The optional output argument momenta check (of type logical) behaves
as explained at the end of Section 4.5.3.

4.5.16. rescale spin correlation rcl (npr,j,v,A2sc)

This subroutine allows the user to rescale the results calcu-
lated by compute spin correlation rcl to a different value of αs.
To this end, the user first sets a new value for αs (by means
of set alphas rcl or compute running alphas rcl) and then calls
rescale spin correlation rcl with a process identifier npr and an iden-
tifier j for the position of the external photon (npr and j are of type
integer). This leads to a rescaling of the stored results for the LO

amplitudes A(~c,~h)
0 and for the spin-correlated squared amplitudes

(

A2
)

s
(j)

for the process npr and the photon j, overwriting previous results.
The vector v(0:3) (of type complex(dp)) plays the same role as in
compute spin correlation rcl. While the rescaling of the LO amplitudes

A(~c,~h)
0 is not affected by the value of v, the spin-correlated squared am-

plitudes
(

A2
)

s
(j) are computed by rescale spin correlation rcl for the

current value of v, independently of previous computations of spin correla-
tions. The rescaled result can be either obtained with help of the subroutine
get spin correlation rcl or via the optional output argument A2sc (de-
fined as for compute spin correlation rcl).

4.5.17. get spin correlation rcl (npr,pow,A2sc)

This subroutine extracts the computed value of the LO spin-correlated
squared amplitude

(

A2
)

s
(see Section 2.7 for details) for the process with

64

identifier npr (of type integer). The integer argument pow specifies the
power of αs of the contribution to be extracted.

The argument A2sc of type real(dp) delivers the output of the
subroutine consisting of the value of the LO spin-correlated squared
amplitudes from the last call of compute spin correlation rcl or
rescale spin correlation rcl for the process with process number npr.

4.5.18. compute spin colour correlation rcl

(npr,p,i1,i2,v,A2scc,momenta check)

This subroutine computes the LO amplitudes A(~c,~h)
0 and the specific

colour-correlated squared amplitude
(

A2
)

sc
(i1, i2) for the pair (i1, i2) of an

external gluon i1 and a spectator i2 (see Section 2.7 for details) for the pro-
cess with identifier npr (of type integer). The integer arguments i1 and
i2 denote the position identifiers of the respective external particles (ordered
as in the process definition). The polarization vector of the gluon i1 is substi-
tuted by the four-vector v(0:3) (of type complex(dp)) provided by the user
(see Section 2.7 for details). In the computation of the squared amplitude
a sum/average is performed over helicities and colours (see Section 2.6 for
details on the definition of squared amplitudes); for particles that have been
defined with a specific helicity and for the gluon i1, no helicity sum/average
is performed.

The definition of input argument p(0:3,1:l) of type real(dp) is de-
scribed in Section 4.5.3.

The results for the LO amplitudes and the spin–colour-correlated squared
amplitudes are stored in internal variables (overwriting previously computed
results for LO amplitudes and spin–colour-correlated squared amplitudes
for process npr and particle pair (i1,i2)). The values of the spin–colour-
correlated squared amplitudes

(

A2
)

sc
(i1, i2) can be read out by the user with

the subroutine get spin colour correlation rcl. The optional output
argument A2scc (of type real(dp)) returns the value for the spin–colour-
correlated squared amplitude for particle pair (i1,i2) with the contributions
from all selected powers of αs summed up.

The optional output argument momenta check (of type logical) behaves
as explained at the end of Section 4.5.3.

4.5.19. rescale spin colour correlation rcl (npr,i1,i2,v,A2scc)

This subroutine can be used to rescale the results calculated
by compute spin colour correlation rcl to a different value of αs.

65

To this end, the user first sets a new value for αs (by means
of set alphas rcl or compute running alphas rcl) and then calls
rescale spin colour correlation rcl with a process identifier npr and
position identifiers i1 for the gluon and i2 for the spectator (npr, i1, and
i2 are of type integer). This leads to a rescaling of the stored results for

the LO amplitudes A(~c,~h)
0 and for the spin–colour-correlated squared am-

plitudes
(

A2
)

sc
(i1, i2) for the process npr and the particle pair (i1,i2),

overwriting previous results. The vector v(0:3) (of type complex(dp))
plays the same role as in compute spin colour correlation rcl. While

the rescaling of the LO amplitudes A(~c,~h)
0 is not affected by the value

of v, the spin–colour-correlated squared amplitudes
(

A2
)

sc
(i1, i2) are com-

puted by rescale spin correlation rcl for the current value of v, in-
dependently of previous computations of spin–colour correlations. The
rescaled result can be either obtained with help of the subroutine
get spin colour correlation rcl or via the optional output argument
A2scc (defined as for compute spin colour correlation rcl).

4.5.20. get spin colour correlation rcl (npr,pow,i1,i2,A2scc)

This subroutine extracts the computed value of the LO spin–colour-
correlated squared amplitude

(

A2
)

sc
(i1, i2) for the pair (i1, i2) of gluon i1

and spectator i2 (see Section 2.7 for details) for the process with identi-
fier npr (of type integer). The integer arguments i1 and i2 denote
the position identifiers of the respective external particles (ordered as in
the process definition). The integer argument pow specifies the power
of αs of the contribution to be extracted. The argument A2scc of type
real(dp) delivers the output of the subroutine consisting of the value of
the LO spin–colour-correlated squared amplitudes as stored in the inter-
nal variables by the last call of compute spin colour correlation rcl, or
rescale spin colour correlation rcl for the process with process num-
ber npr and particle pair (i1,i2).

4.5.21. get momenta rcl (npr,p)

This subroutine extracts the momenta of the process with identifier
npr (of type integer), stored from the last call of a subroutine of type
compute ... rcl for process npr. The output array p is of type real(dp)

and has the format p(0:3,1:l), where l is the number of external particles
of process npr.

66

Note that Recola adjusts the momenta provided by the user if it detects
violation of momentum conservation or mass-shell conditions.

4.5.22. set TIs required accuracy rcl (acc)

This subroutine sets the required accuracy for TIs to the value acc (of
type real(dp)). This parameter is passed to Collier as target accuracy
ηreq (see Ref. [48] for details).

4.5.23. get TIs required accuracy rcl (acc)

This subroutine extracts the value of the required accuracy ηreq for TIs
from Collier (see Ref. [48] for details) and returns it as value of the output
variable acc (of type real(dp)).

4.5.24. set TIs critical accuracy rcl (acc)

This subroutine sets the critical accuracy for TIs to the value acc (of type
real(dp)). This parameter is passed to Collier as critical accuracy ηcrit
(see Ref. [48] for details).

4.5.25. get TIs critical accuracy rcl (acc)

This subroutine extracts the value of the critical accuracy ηcrit for TIs
from Collier (see Ref. [48] for details) and returns it as value of the output
variable acc (of type real(dp)).

4.5.26. get TIs accuracy flag rcl (flag)

This subroutine extracts the value of the accuracy flag σacc for TIs from
Collier (see Ref. [48] for details). The output variable flag (of type
integer) returns global information on the accuracy of the TIs evaluated
in the last call of compute process rcl:

• flag = 0: For all TIs, the accuracy is estimated to be better than the
required value.

• flag = -1: For at least one TI, the accuracy is estimated to be worse
than the required value, but for all TIs, the accuracy is estimated to
be better than the critical value.

• flag = -2: For at least one TI, the accuracy is estimated to be worse
than the critical values.

The value of variable flag is determined based on internal uncertainty esti-
mations performed by Collier.

67

4.6. Reset: reset recola rcl

The file reset.f90 only contains the single subroutine reset recola rcl

which can be called to free memory and to allow for the definition of a new
set of processes in the same run of the program. A call of this subroutine
deallocates all global allocatable arrays internally generated by Recola and
restores the initialization values for a bunch of internal variables, allowing to
restart the application of Recola with step 1 or 2 of the sequence defined
at the beginning of Section 4. The input variables in input.f90 keep their
actual values. The call of reset recola rcl resets the name of the output
file to the default value output.rcl.

5. Conclusions

The Fortran-based library Recola calculates amplitudes and squared
amplitudes in the Standard Model of particle physics including QCD and
the electroweak interaction at the tree and one-loop level with no a-priori
restriction on the particle multiplicities. Amplitudes can be obtained for spe-
cific colour structures and helicities and squared amplitudes with or without
summation/average over helicities. Moreover, colour- and spin-correlated
leading-order squared amplitudes for dipole subtraction are provided.

Renormalization is performed in the complex-mass scheme, or alterna-
tively in the on-shell scheme, and various renormalization schemes are sup-
ported for the electromagnetic coupling. For the strong coupling, fixed or
dynamical Nf -flavour schemes are available. Infrared singularites can be
regularized dimensionally or with infinitesimal fermion and photon/gluon
masses. The code allows to select contributions involving specific resonances.

The present version of the code is restricted to the Standard Model in the
’t Hooft–Feynman gauge. A version for more general theories is in prepara-
tion.

6. Acknowledgements

We thank B. Biedermann, R. Feger, and M. Pellen for performing various
checks of the code. This work was supported by the Deutsche Forschungs-
gemeinschaft (DFG) under reference number DE 623/2-1. The work of L.H.
was supported by the grants FPA2013-46570-C2-1-P and 2014-SGR-104, and
partially by the Spanish MINECO under the project MDM-2014-0369 of IC-
CUB (Unidad de Excelencia “Maŕıa de Maeztu”). The work of S.U. was

68

supported in part by the European Commission through the HiggsTools Ini-
tial Training Network PITN-GA-2012-316704.

Appendix A. Explicit representations for spinors and polarization
vectors

Here we list the explicit expressions of the spinors and polarization vectors
used inRecola, which are in the chiral representation for the Dirac matrices:

• Spinors for massive fermions:

u+(p) =
1

r

a+b+
sa+b−p̂+
−sa−b+
−a−b− p̂+

, u−(p) =
1

r

a−b−p̂−
−sa−b+

−sa+b−p̂−
a+b+

,

v+(p) =
1

r

−a−b−p̂−
sa−b+

−sa+b−p̂−
a+b+

, v−(p) =
1

r

a+b+
sa+b−p̂+
sa−b+
a−b−p̂+

,

ū+(p) =
1

r

(

sa−b+, a−b−p̂−, −a+b+, −sa+b−p̂−

)

,

ū−(p) =
1

r

(

sa+b−p̂+, −a+b+, −a−b−p̂+, sa−b+

)

,

v̄+(p) =
1

r

(

sa+b−p̂+, −a+b+, a−b−p̂+, −sa−b+

)

,

v̄−(p) =
1

r

(

− sa−b+, −a−b−p̂−, −a+b+, −sa+b−p̂−

)

, (A.1)

with

r =
√

2|~p|, a± =
√

|p0| ± |~p|, b± =
√

|~p| ± s pz, s = sign(p0),

p̂± =
p±
p
T

, p± = px ± i py, p
T
=

√

p2x + p2y, |~p| =
√

p2
T
+ p2z.

(A.2)

69

• Spinors for massless fermions:

u+(p) = v−(p) =

b+
sb−p̂+

0
0

, u−(p) = v+(p) =

0
0

−sb−p̂−
b+

,

ū+(p) = v̄−(p) =
(

0, 0, −b+, −sb−p̂−

)

,

ū−(p) = v̄+(p) =
(

sb−p̂+, −b+, 0, 0
)

. (A.3)

• Transverse polarization vectors (for massless and massive vector
bosons):

ǫ± =
1√

2 |~p| pT

(

0, ∓s px pz+i py |~p|, ∓s py pz−i px |~p|, ±s p2T

)

. (A.4)

• Longitudinal polarization vectors (for massive vector bosons with mass
M):

ǫ0 =
1

M |~p|
(

|~p|2, px p0, py p0, pz p0
)

. (A.5)

Appendix B. Checks

A variety of processes has been checked at LO and NLO with the in-house
code Pole [72] and the code OpenLoops [14]. The typical agreement for
NLO matrix elements ranges from 10−14 for processes with 4 external legs
to 10−10 for processes with 6 external legs in the comparison with Pole,
and from 10−12 to 10−8 in the comparison with OpenLoops. Note that
the precision of the NLO matrix element strongly depends on the phase-
space point for which it is evaluated, and is limited by the accuracy of the
tensor intagrals, compared to which numerical uncertainties from the tensor
coefficients calculated by Recola are completely negligible.

The following processes have been checked with the code Pole in a Monte
Carlo integration for the calculations in Refs. [16, 33, 35, 36]:

• 5-leg processes (all powers of αs at LO, O(α2
sα) and O(αsα

2) at NLO):
u g → u g Z
d g → d g Z ,

70

• 6-leg process (all powers of αs at LO, O(α2
sα) and O(αsα

2) at NLO):
u d → u d e+ e− ,

• 6-leg processes (all powers of αs at LO and NLO):
u ū → µ+ µ− e+ e−

u ū → µ+ µ− µ+ µ−

b b̄ → µ+ µ− µ+ µ− .

The following processes have been checked for single phase-space points:

• 4-leg processes (EW) checked with the code Pole:
ū u → ν̄e νe
u d̄ → νe e

+

e+ e− → ν̄e νe
e+ e− → W+ W−

e+ e− → ZH ,

• 4-leg processes (QCD) checked with the code OpenLoops:
u d̄ → W+ g
g g → g g
b b̄ → t t̄
g g → b b̄ ,

• 4-leg processes (EW+QCD) checked with the code Pole:
d̄ d → ū u
u d̄ → W+ H ,

• 5-leg processes (EW) checked with the code Pole:
u d̄ → e+ νe γ ,

• 5-leg processes (QCD) checked with the code OpenLoops:
u ū → W+ W− g
u ū → ZZ g
u ū → Z γ g
u ū → γ γ g
u d̄ → W+ g g
u d̄ → W+ t t̄
u ū → Z t t̄
d d̄ → Z t t̄
g g → W+ b t̄

71

g g → Z t t̄
u ū → Z g g
g g → g t t̄
g g → g g g
d d̄ → d d̄ g
d d̄ → t t̄ g
b b̄ → t t̄ g ,

• 6-leg processes (QCD) checked with the code OpenLoops:
u d̄ → W+ g g g
u ū → Z g g g
u ū → W+ W− g g
u ū → ZZ g g
d d̄ → t t̄ b b̄
g g → t t̄ b b̄
u ū → u ū u ū
g g → u ū u ū
g g → u ū d d̄
g g → u ū g g
g g → t t̄ g g .

Thereby (EW) refers to contributions to the squared amplitudes with min-
imal power of αs at LO and at NLO, (QCD) refers to contributions to
the squared amplitudes with maximal power of αs at LO and at NLO and
(EW+QCD) refers to the sum of all contributions to the squared amplitudes
at LO and at NLO.

References

[1] J. Campbell, et al., Working Group Report: Quantum Chromodynamics
(2013). arXiv:1310.5189.

[2] J. R. Andersen, et al., Les Houches 2013: Physics at TeV Colliders,
Standard Model Working Group Report (2014). arXiv:1405.1067.

[3] Z. Bern, et al., The NLO multileg working group, Summary report
(2008). arXiv:0803.0494.

[4] T. Binoth, et al., The SM and NLO Multileg Working Group: Summary
report (2010). arXiv:1003.1241.

72

http://arxiv.org/abs/1310.5189
http://arxiv.org/abs/1405.1067
http://arxiv.org/abs/0803.0494
http://arxiv.org/abs/1003.1241

[5] J. Alcaraz Maestre, et al., The SM and NLO Multileg and SM MC
Working Groups: Summary Report (2012). arXiv:1203.6803.

[6] Z. Bern, L. J. Dixon, D. C. Dunbar, D. A. Kosower, One-
loop n-point gauge theory amplitudes, unitarity and collinear lim-
its, Nucl. Phys. B425 (1994) 217–260. arXiv:hep-ph/9403226,
doi:10.1016/0550-3213(94)90179-1.

[7] Z. Bern, L. J. Dixon, D. C. Dunbar, D. A. Kosower, Fusing gauge theory
tree amplitudes into loop amplitudes, Nucl. Phys. B435 (1995) 59–101.
arXiv:hep-ph/9409265, doi:10.1016/0550-3213(94)00488-Z.

[8] R. Britto, F. Cachazo, B. Feng, Generalized unitarity and one-loop am-
plitudes in N=4 super-Yang-Mills, Nucl. Phys. B725 (2005) 275–305.
arXiv:hep-th/0412103, doi:10.1016/j.nuclphysb.2005.07.014.

[9] G. Ossola, C. G. Papadopoulos, R. Pittau, Reducing full one-loop ampli-
tudes to scalar integrals at the integrand level, Nucl. Phys. B763 (2007)
147–169. arXiv:hep-ph/0609007.

[10] R. K. Ellis, W. Giele, Z. Kunszt, A numerical unitarity formal-
ism for evaluating one-loop amplitudes, JHEP 0803 (2008) 003.
arXiv:0708.2398, doi:10.1088/1126-6708/2008/03/003.

[11] W. T. Giele, Z. Kunszt, K. Melnikov, Full one-loop amplitudes
from tree amplitudes, JHEP 0804 (2008) 049. arXiv:0801.2237,
doi:10.1088/1126-6708/2008/04/049.

[12] R. K. Ellis, W. T. Giele, Z. Kunszt, K. Melnikov, Masses, fermions and
generalized D-dimensional unitarity, Nucl. Phys. B822 (2009) 270–282.
arXiv:0806.3467, doi:10.1016/j.nuclphysb.2009.07.023.

[13] A. van Hameren, C. Papadopoulos, R. Pittau, Automated one-
loop calculations: A proof of concept, JHEP 0909 (2009) 106.
arXiv:0903.4665, doi:10.1088/1126-6708/2009/09/106.

[14] F. Cascioli, P. Maierhöfer, S. Pozzorini, Scattering amplitudes with
Open Loops, Phys. Rev. Lett. 108 (2012) 111601. arXiv:1111.5206,
doi:10.1103/PhysRevLett.108.111601.

73

http://arxiv.org/abs/1203.6803
http://arxiv.org/abs/hep-ph/9403226
http://dx.doi.org/10.1016/0550-3213(94)90179-1
http://arxiv.org/abs/hep-ph/9409265
http://dx.doi.org/10.1016/0550-3213(94)00488-Z
http://arxiv.org/abs/hep-th/0412103
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.014
http://arxiv.org/abs/hep-ph/0609007
http://arxiv.org/abs/0708.2398
http://dx.doi.org/10.1088/1126-6708/2008/03/003
http://arxiv.org/abs/0801.2237
http://dx.doi.org/10.1088/1126-6708/2008/04/049
http://arxiv.org/abs/0806.3467
http://dx.doi.org/10.1016/j.nuclphysb.2009.07.023
http://arxiv.org/abs/0903.4665
http://dx.doi.org/10.1088/1126-6708/2009/09/106
http://arxiv.org/abs/1111.5206
http://dx.doi.org/10.1103/PhysRevLett.108.111601

[15] A. van Hameren, Multi-gluon one-loop amplitudes using ten-
sor integrals, JHEP 0907 (2009) 088. arXiv:0905.1005,
doi:10.1088/1126-6708/2009/07/088.

[16] S. Actis, A. Denner, L. Hofer, A. Scharf, S. Uccirati, Recursive genera-
tion of one-loop amplitudes in the Standard Model, JHEP 1304 (2013)
037. arXiv:1211.6316, doi:10.1007/JHEP04(2013)037.

[17] Z. Nagy, D. E. Soper, General subtraction method for numerical cal-
culation of one loop QCD matrix elements, JHEP 09 (2003) 055.
arXiv:hep-ph/0308127, doi:10.1088/1126-6708/2003/09/055.

[18] S. Becker, C. Reuschle, S. Weinzierl, Numerical NLO QCD
calculations, JHEP 12 (2010) 013. arXiv:1010.4187,
doi:10.1007/JHEP12(2010)013.

[19] G. Duplancic, B. Klajn, Direct numerical approach to one-loop ampli-
tudes (2016). arXiv:1604.07022.

[20] T. Hahn, Generating Feynman diagrams and amplitudes with
FeynArts 3, Comput. Phys. Commun. 140 (2001) 418–431.
arXiv:hep-ph/0012260, doi:10.1016/S0010-4655(01)00290-9.

[21] S. Agrawal, T. Hahn, E. Mirabella, FormCalc 7.5, PoS LL2012 (2012)
046. arXiv:1210.2628.

[22] B. Chokoufe Nejad, T. Hahn, J.-N. Lang, E. Mirabella, FormCalc 8:
Better algebra and vectorization, J. Phys. Conf. Ser. 523 (2014) 012050.
arXiv:1310.0274, doi:10.1088/1742-6596/523/1/012050.

[23] C. Berger, et al., An automated implementation of on-shell methods for
one-loop amplitudes, Phys. Rev. D78 (2008) 036003. arXiv:0803.4180,
doi:10.1103/PhysRevD.78.036003.

[24] S. Badger, B. Biedermann, P. Uwer, NGluon: a package to calculate
one-loop multi-gluon amplitudes, Comput. Phys. Commun. 182 (2011)
1674–1692. arXiv:1011.2900, doi:10.1016/j.cpc.2011.04.008.

[25] S. Badger, B. Biedermann, P. Uwer, V. Yundin, Numerical evalua-
tion of virtual corrections to multi-jet production in massless QCD,
Comput. Phys. Commun. 184 (2013) 1981–1998. arXiv:1209.0100,
doi:10.1016/j.cpc.2013.03.018.

74

http://arxiv.org/abs/0905.1005
http://dx.doi.org/10.1088/1126-6708/2009/07/088
http://arxiv.org/abs/1211.6316
http://dx.doi.org/10.1007/JHEP04(2013)037
http://arxiv.org/abs/hep-ph/0308127
http://dx.doi.org/10.1088/1126-6708/2003/09/055
http://arxiv.org/abs/1010.4187
http://dx.doi.org/10.1007/JHEP12(2010)013
http://arxiv.org/abs/1604.07022
http://arxiv.org/abs/hep-ph/0012260
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://arxiv.org/abs/1210.2628
http://arxiv.org/abs/1310.0274
http://dx.doi.org/10.1088/1742-6596/523/1/012050
http://arxiv.org/abs/0803.4180
http://dx.doi.org/10.1103/PhysRevD.78.036003
http://arxiv.org/abs/1011.2900
http://dx.doi.org/10.1016/j.cpc.2011.04.008
http://arxiv.org/abs/1209.0100
http://dx.doi.org/10.1016/j.cpc.2013.03.018

[26] J. Alwall, et al., The automated computation of tree-level and next-
to-leading order differential cross sections, and their matching to par-
ton shower simulations, JHEP 07 (2014) 079. arXiv:1405.0301,
doi:10.1007/JHEP07(2014)079.

[27] G. Cullen, et al., Automated one-loop calculations with
GoSam, Eur. Phys. J. C72 (2012) 1889. arXiv:1111.2034,
doi:10.1140/epjc/s10052-012-1889-1.

[28] S. Kallweit, J. M. Lindert, P. Maierhöfer, S. Pozzorini, M. Schönherr,
NLO electroweak automation and precise predictions for W+multijet
production at the LHC, JHEP 04 (2015) 012. arXiv:1412.5157,
doi:10.1007/JHEP04(2015)012.

[29] S. Kallweit, J. M. Lindert, S. Pozzorini, M. Schönherr, P. Maierhöfer,
NLO QCD+EW predictions for V+jets including off-shell vector-boson
decays and multijet merging, JHEP 04 (2016) 021. arXiv:1511.08692,
doi:10.1007/JHEP04(2016)021.

[30] S. Frixione, V. Hirschi, D. Pagani, H. S. Shao, M. Zaro, Weak corrections
to Higgs hadroproduction in association with a top-quark pair, JHEP
09 (2014) 065. arXiv:1407.0823, doi:10.1007/JHEP09(2014)065.

[31] S. Frixione, V. Hirschi, D. Pagani, H. S. Shao, M. Zaro, Elec-
troweak and QCD corrections to top-pair hadroproduction in associ-
ation with heavy bosons, JHEP 06 (2015) 184. arXiv:1504.03446,
doi:10.1007/JHEP06(2015)184.

[32] M. Chiesa, N. Greiner, F. Tramontano, Automation of electroweak
corrections for LHC processes, J. Phys. G43 (1) (2016) 013002.
arXiv:1507.08579, doi:10.1088/0954-3899/43/1/013002.

[33] A. Denner, L. Hofer, A. Scharf, S. Uccirati, Electroweak cor-
rections to lepton-pair production in association with two hard
jets at the LHC, JHEP 01 (2015) 094. arXiv:1411.0916,
doi:10.1007/JHEP01(2015)094.

[34] B. Biedermann, et al., Next-to-leading-order electroweak corrections
to pp → W+W− → 4 leptons at the LHC, JHEP 06 (2016) 065.
arXiv:1605.03419, doi:10.1007/JHEP06(2016)065.

75

http://arxiv.org/abs/1405.0301
http://dx.doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1111.2034
http://dx.doi.org/10.1140/epjc/s10052-012-1889-1
http://arxiv.org/abs/1412.5157
http://dx.doi.org/10.1007/JHEP04(2015)012
http://arxiv.org/abs/1511.08692
http://dx.doi.org/10.1007/JHEP04(2016)021
http://arxiv.org/abs/1407.0823
http://dx.doi.org/10.1007/JHEP09(2014)065
http://arxiv.org/abs/1504.03446
http://dx.doi.org/10.1007/JHEP06(2015)184
http://arxiv.org/abs/1507.08579
http://dx.doi.org/10.1088/0954-3899/43/1/013002
http://arxiv.org/abs/1411.0916
http://dx.doi.org/10.1007/JHEP01(2015)094
http://arxiv.org/abs/1605.03419
http://dx.doi.org/10.1007/JHEP06(2016)065

[35] B. Biedermann, A. Denner, S. Dittmaier, L. Hofer, B. Jäger, Elec-
troweak corrections to pp → µ+µ−e+e− + X at the LHC – a
Higgs background study, Phys. Rev. Lett. 116 (16) (2016) 161803.
arXiv:1601.07787, doi:10.1103/PhysRevLett.116.161803.

[36] B. Biedermann, A. Denner, S. Dittmaier, L. Hofer, B. Jager, Next-to-
leading-order electroweak corrections to the production of four charged
leptons at the LHCarXiv:1611.05338.

[37] A. Denner, M. Pellen, NLO electroweak corrections to off-shell top-
antitop production with leptonic decays at the LHC, JHEP 08 (2016)
155. arXiv:1607.05571, doi:10.1007/JHEP08(2016)155.

[38] B. Biedermann, A. Denner, M. Pellen, Large electroweak cor-
rections to vector-boson scattering at the Large Hadron Col-
liderarXiv:1611.02951.

[39] A. Denner, R. Feger, NLO QCD corrections to off-shell top-
antitop production with leptonic decays in association with a Higgs
boson at the LHC, JHEP 11 (2015) 209. arXiv:1506.07448,
doi:10.1007/JHEP11(2015)209.

[40] G. Ossola, C. G. Papadopoulos, R. Pittau, CutTools: a pro-
gram implementing the OPP reduction method to compute one-
loop amplitudes, JHEP 0803 (2008) 042. arXiv:0711.3596,
doi:10.1088/1126-6708/2008/03/042.

[41] P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano, Scat-
tering amplitudes from unitarity-based reduction algorithm at
the integrand-level, JHEP 1008 (2010) 080. arXiv:1006.0710,
doi:10.1007/JHEP08(2010)080.

[42] T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expan-
sion for One-Loop Amplitudes, Comput. Phys. Commun. 185 (2014)
2771–2797. arXiv:1403.1229, doi:10.1016/j.cpc.2014.06.017.

[43] G. van Oldenborgh, FF: A Package to evaluate one-loop Feyn-
man diagrams, Comput. Phys. Commun. 66 (1991) 1–15.
doi:10.1016/0010-4655(91)90002-3.

76

http://arxiv.org/abs/1601.07787
http://dx.doi.org/10.1103/PhysRevLett.116.161803
http://arxiv.org/abs/1611.05338
http://arxiv.org/abs/1607.05571
http://dx.doi.org/10.1007/JHEP08(2016)155
http://arxiv.org/abs/1611.02951
http://arxiv.org/abs/1506.07448
http://dx.doi.org/10.1007/JHEP11(2015)209
http://arxiv.org/abs/0711.3596
http://dx.doi.org/10.1088/1126-6708/2008/03/042
http://arxiv.org/abs/1006.0710
http://dx.doi.org/10.1007/JHEP08(2010)080
http://arxiv.org/abs/1403.1229
http://dx.doi.org/10.1016/j.cpc.2014.06.017
http://dx.doi.org/10.1016/0010-4655(91)90002-3

[44] T. Hahn, M. Perez-Victoria, Automatized one-loop calculations in four-
dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153–
165. arXiv:hep-ph/9807565, doi:10.1016/S0010-4655(98)00173-8.

[45] J. Fleischer, T. Riemann, A Complete algebraic reduction of one-
loop tensor Feynman integrals, Phys. Rev. D83 (2011) 073004.
arXiv:1009.4436, doi:10.1103/PhysRevD.83.073004.

[46] G. Cullen, et al., Golem95C: A library for one-loop integrals with
complex masses, Comput. Phys. Commun. 182 (2011) 2276–2284.
arXiv:1101.5595, doi:10.1016/j.cpc.2011.05.015.

[47] A. Denner, S. Dittmaier, L. Hofer, COLLIER - A fortran-library for
one-loop integrals, PoS LL2014 (2014) 071. arXiv:1407.0087.

[48] A. Denner, S. Dittmaier, L. Hofer, COLLIER: a fortran-based
Complex One-Loop LIbrary in Extended Regularizations (2016).
arXiv:1604.06792.

[49] H. H. Patel, Package-X: A Mathematica package for the analytic calcula-
tion of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276–290.
arXiv:1503.01469, doi:10.1016/j.cpc.2015.08.017.

[50] R. K. Ellis, G. Zanderighi, Scalar one-loop integrals
for QCD, JHEP 0802 (2008) 002. arXiv:0712.1851,
doi:10.1088/1126-6708/2008/02/002.

[51] A. van Hameren, OneLOop: For the evaluation of one-loop
scalar functions, Comput. Phys. Commun. 182 (2011) 2427–2438.
arXiv:1007.4716, doi:10.1016/j.cpc.2011.06.011.

[52] A. Denner, S. Dittmaier, M. Roth, D. Wackeroth, Predictions for all
processes e+e− → 4 fermions + γ, Nucl. Phys. B560 (1999) 33–65.
arXiv:hep-ph/9904472, doi:10.1016/S0550-3213(99)00437-X.

[53] A. Denner, S. Dittmaier, M. Roth, L. Wieders, Electroweak cor-
rections to charged-current e+e− → 4 fermion processes: Tech-
nical details and further results, Nucl. Phys. B724 (2005) 247–
294, erratum-ibid. B854 (2012) 504–507. arXiv:hep-ph/0505042,
doi:10.1016/j.nuclphysb.2005.06.033,10.1016/j.nuclphysb.2011.09.001.

77

http://arxiv.org/abs/hep-ph/9807565
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://arxiv.org/abs/1009.4436
http://dx.doi.org/10.1103/PhysRevD.83.073004
http://arxiv.org/abs/1101.5595
http://dx.doi.org/10.1016/j.cpc.2011.05.015
http://arxiv.org/abs/1407.0087
http://arxiv.org/abs/1604.06792
http://arxiv.org/abs/1503.01469
http://dx.doi.org/10.1016/j.cpc.2015.08.017
http://arxiv.org/abs/0712.1851
http://dx.doi.org/10.1088/1126-6708/2008/02/002
http://arxiv.org/abs/1007.4716
http://dx.doi.org/10.1016/j.cpc.2011.06.011
http://arxiv.org/abs/hep-ph/9904472
http://dx.doi.org/10.1016/S0550-3213(99)00437-X
http://arxiv.org/abs/hep-ph/0505042
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.033, 10.1016/j.nuclphysb.2011.09.001

[54] A. Denner, S. Dittmaier, Scalar one-loop 4-point inte-
grals, Nucl. Phys. B844 (2011) 199–242. arXiv:1005.2076,
doi:10.1016/j.nuclphysb.2010.11.002.

[55] Z. Bern, et al., Ntuples for NLO events at hadron colliders, Com-
put. Phys. Commun. 185 (2014) 1443–1460. arXiv:1310.7439,
doi:10.1016/j.cpc.2014.01.011.

[56] F. J. Dyson, The S matrix in quantum electrodynamics, Phys. Rev. 75
(1949) 1736–1755. doi:10.1103/PhysRev.75.1736.

[57] J. S. Schwinger, On the Green’s functions of quantized fields. 1., Proc.
Nat. Acad. Sci. 37 (1951) 452–455. doi:10.1073/pnas.37.7.452.

[58] J. S. Schwinger, On the Green’s functions of quantized fields. 2., Proc.
Nat. Acad. Sci. 37 (1951) 455–459. doi:10.1073/pnas.37.7.455.

[59] A. Denner, Techniques for calculation of electroweak radiative
corrections at the one-loop level and results for W physics at
LEP-200, Fortsch. Phys. 41 (1993) 307–420. arXiv:0709.1075,
doi:10.1002/prop.2190410402.

[60] G. Ossola, C. G. Papadopoulos, R. Pittau, On the rational terms
of the one-loop amplitudes, JHEP 05 (2008) 004. arXiv:0802.1876,
doi:10.1088/1126-6708/2008/05/004.

[61] P. Draggiotis, M. V. Garzelli, C. G. Papadopoulos, R. Pittau, Feynman
rules for the rational part of the QCD 1-loop amplitudes, JHEP 04
(2009) 072. arXiv:0903.0356, doi:10.1088/1126-6708/2009/04/072.

[62] M. V. Garzelli, I. Malamos, R. Pittau, Feynman rules for the
rational part of the electroweak 1-loop amplitudes, JHEP 01
(2010) 040, [Erratum: JHEP10,097(2010)]. arXiv:0910.3130,
doi:10.1007/JHEP10(2010)097,10.1007/JHEP01(2010)040.

[63] H.-S. Shao, Y.-J. Zhang, K.-T. Chao, Feynman rules for the ra-
tional part of the Standard Model one-loop amplitudes in the
’t Hooft-Veltman γ5 scheme, JHEP 09 (2011) 048. arXiv:1106.5030,
doi:10.1007/JHEP09(2011)048.

78

http://arxiv.org/abs/1005.2076
http://dx.doi.org/10.1016/j.nuclphysb.2010.11.002
http://arxiv.org/abs/1310.7439
http://dx.doi.org/10.1016/j.cpc.2014.01.011
http://dx.doi.org/10.1103/PhysRev.75.1736
http://dx.doi.org/10.1073/pnas.37.7.452
http://dx.doi.org/10.1073/pnas.37.7.455
http://arxiv.org/abs/0709.1075
http://dx.doi.org/10.1002/prop.2190410402
http://arxiv.org/abs/0802.1876
http://dx.doi.org/10.1088/1126-6708/2008/05/004
http://arxiv.org/abs/0903.0356
http://dx.doi.org/10.1088/1126-6708/2009/04/072
http://arxiv.org/abs/0910.3130
http://dx.doi.org/10.1007/JHEP10(2010)097, 10.1007/JHEP01(2010)040
http://arxiv.org/abs/1106.5030
http://dx.doi.org/10.1007/JHEP09(2011)048

[64] R. K. Ellis, W. J. Stirling, B. R. Webber, QCD and collider physics,
Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8 (1996) 1–435.

[65] A. Denner, S. Dittmaier, The complex-mass scheme for per-
turbative calculations with unstable particles, Nucl. Phys.
Proc. Suppl. 160 (2006) 22–26. arXiv:hep-ph/0605312,
doi:10.1016/j.nuclphysbps.2006.09.025.

[66] A. Kanaki, C. G. Papadopoulos, HELAC-PHEGAS: Auto-
matic computation of helicity amplitudes and cross-sections,
[AIP Conf. Proc.583,169(2001)] (2000). arXiv:hep-ph/0012004,
doi:10.1063/1.1405294.

[67] F. Maltoni, K. Paul, T. Stelzer, S. Willenbrock, Color flow de-
composition of QCD amplitudes, Phys. Rev. D67 (2003) 014026.
arXiv:hep-ph/0209271, doi:10.1103/PhysRevD.67.014026.

[68] S. Catani, M. H. Seymour, A general algorithm for calculating
jet cross sections in NLO QCD, Nucl. Phys. B485 (1997) 291–419.
arXiv:hep-ph/9605323, doi:10.1016/S0550-3213(96)00589-5.

[69] S. Catani, S. Dittmaier, M. H. Seymour, Z. Trocsanyi, The dipole
formalism for next-to-leading order QCD calculations with massive
partons, Nucl. Phys. B627 (2002) 189–265. arXiv:hep-ph/0201036,
doi:10.1016/S0550-3213(02)00098-6.

[70] K. A. Olive, et al., Review of Particle Physics, Chin. Phys. C38 (2014)
090001. doi:10.1088/1674-1137/38/9/090001.

[71] M. Böhm, A. Denner, H. Joos, Gauge theories of the strong and elec-
troweak interaction, Teubner, Stuttgart, Germany, 2001.

[72] E. Accomando, A. Denner, C. Meier, Electroweak corrections to Wγ
and Zγ production at the LHC, Eur. Phys. J. C47 (2006) 125–146.
arXiv:hep-ph/0509234, doi:10.1140/epjc/s2006-02521-y.

79

http://arxiv.org/abs/hep-ph/0605312
http://dx.doi.org/10.1016/j.nuclphysbps.2006.09.025
http://arxiv.org/abs/hep-ph/0012004
http://dx.doi.org/10.1063/1.1405294
http://arxiv.org/abs/hep-ph/0209271
http://dx.doi.org/10.1103/PhysRevD.67.014026
http://arxiv.org/abs/hep-ph/9605323
http://dx.doi.org/10.1016/S0550-3213(96)00589-5
http://arxiv.org/abs/hep-ph/0201036
http://dx.doi.org/10.1016/S0550-3213(02)00098-6
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://arxiv.org/abs/hep-ph/0509234
http://dx.doi.org/10.1140/epjc/s2006-02521-y

	Introduction
	Basic features of Recola
	Collinear and soft singularities
	Dimensional regularization
	The strong coupling constant alphas
	Electroweak renormalization
	Amplitude structure
	Squared amplitudes
	Colour- and spin-correlated squared amplitudes
	Selecting intermediate states and resonances
	Conventions

	Installation
	The Recola–Collier package
	The Recola package

	Usage of Recola
	Input variables
	Pole masses and widths of the SM particles
	Parameters governing the treatment of collinear singularities
	Parameters governing the treatment of soft singularities
	Dimensional regularization parameters
	Parameters for the renormalization of the QCD coupling
	Parameters for the renormalization of the EW coupling
	Parameter for the renormalization of masses of unstable particles
	Parameter for self-energies of resonant particles
	Parameter for dynamic settings of parameters
	Parameter for the automatic correction of external momenta
	Options for the visualization of the off-shell currents
	Output options

	Input subroutines
	set_pole_mass_prtcl_rcl (m,g)
	set_pole_mass_prtcl_rcl (m)
	set_onshell_mass_v_rcl (m,g)
	set_light_fermions_rcl (m)
	set_light_ferm_rcl
	use_dim_reg_soft_rcl
	use_mass_reg_soft_rcl (m)
	set_mass_reg_soft_rcl (m)
	set_delta_uv_rcl (d)
	set_mu_uv_rcl (m)
	set_delta_ir_rcl (d,d2)
	set_mu_ir_rcl (m)
	set_alphas_rcl (a,s,Nf)
	get_alphas_rcl (a)
	get_renormalization_scale_rcl (mu)
	get_flavour_scheme_rcl (Nf)
	set_alphas_masses_rcl (mc,mb,mt,gc,gb,gt)
	use_gfermi_scheme_rcl (g,a)
	use_alpha0_scheme_rcl (a)
	use_alphaz_scheme_rcl (a)
	get_alpha_rcl (a)
	set_complex_mass_scheme_rcl
	set_on_shell_scheme_rcl
	set_resonant_particle_rcl (pa)
	switchon_resonant_selfenergies_rcl
	switchoff_resonant_selfenergies_rcl
	set_dynamic_settings_rcl (n)
	set_momenta_correction_rcl (mc)
	set_draw_level_branches_rcl (n)
	set_print_level_amplitude_rcl (n)
	set_print_level_squared_amplitude_rcl (n)
	set_print_level_correlations_rcl (n)
	set_print_level_RAM_rcl (n)
	scale_coupling3_rcl (fac,pa1,pa2,pa3)
	scale_coupling4_rcl (fac,pa1,pa2,pa3,pa4)
	switchoff_coupling3_rcl (pa1,pa2,pa3)
	switchoff_coupling4_rcl (pa1,pa2,pa3,pa4)
	set_ifail_rcl (i)
	get_ifail_rcl (i)
	set_output_file_rcl (x)

	Process definition
	define_process_rcl (npr,processIn,order)
	set_gs_power_rcl (npr,gsarray)
	select_gs_power_BornAmpl_rcl (npr,gspower)
	select_gs_power_LoopAmpl_rcl (npr,gspower)
	select_all_gs_powers_BornAmpl_rcl (npr)
	select_all_gs_powers_LoopAmpl_rcl (npr)
	split_collier_cache_rcl (npr,n)

	Process generation: generate_processes_rcl
	Process computation
	set_resonant_squared_momentum_rcl (npr,res,ps)
	compute_running_alphas_rcl (Q,Nf,lp)
	compute_process_rcl (npr,p,order,A2,momenta_check)
	rescale_process_rcl (npr,order,A2)
	get_colour_configurations_rcl (npr,cols)
	get_helicity_configurations_rcl (npr,hels)
	get_amplitude_rcl (npr,pow,order,colour,hel,A)
	get_squared_amplitude_rcl (npr,pow,order,A2)
	get_polarized_squared_amplitude_rcl (npr,pow,order,hel,A2h)
	compute_colour_correlation_rcl (npr,p,i1,i2,A2cc,momenta_check)
	compute_all_colour_correlations_rcl (npr,p,momenta_check)
	rescale_colour_correlation_rcl (npr,i1,i2,A2cc)
	rescale_all_colour_correlations_rcl (npr)
	get_colour_correlation_rcl (npr,pow,i1,i2,A2cc)
	compute_spin_correlation_rcl (npr,p,j,v,A2sc,momenta_check)
	rescale_spin_correlation_rcl (npr,j,v,A2sc)
	get_spin_correlation_rcl (npr,pow,A2sc)
	compute_spin_colour_correlation_rcl (npr,p,i1,i2,v,A2scc,momenta_check)
	rescale_spin_colour_correlation_rcl (npr,i1,i2,v,A2scc)
	get_spin_colour_correlation_rcl (npr,pow,i1,i2,A2scc)
	get_momenta_rcl (npr,p)
	set_TIs_required_accuracy_rcl (acc)
	get_TIs_required_accuracy_rcl (acc)
	set_TIs_critical_accuracy_rcl (acc)
	get_TIs_critical_accuracy_rcl (acc)
	get_TIs_accuracy_flag_rcl (flag)

	Reset: reset_recola_rcl

	Conclusions
	Acknowledgements
	Explicit representations for spinors and polarization vectors
	Checks

